等离子体的量子统计热力学问题:高低温极限与解析性

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Werner Ebeling
{"title":"等离子体的量子统计热力学问题:高低温极限与解析性","authors":"Werner Ebeling","doi":"10.1002/ctpp.202400048","DOIUrl":null,"url":null,"abstract":"The OCP plasma model which has been the favourite plasma model of Gabor Kalman is simple but on the other side connected with some principal difficulties, and gave rise to some controversies. We discuss here the three main problems of Coulomb systems, the limit cases of the parameter : and . We show first that Taylor expansions in are in general divergent and have asymptotic character and expansions in are convergent. We study the analytic properties of the partition functions and the thermodynamic functions. Assuming analytizity with respect to the relevant physical parameter for pair interactions we can show that the analyticity with respect to this parameter allows to extend several OCP—properties, except the exchange functions, to many component systems by analytic continuation of the case to . In particular follows that the Taylor coefficients of analytic OCP functions may be extended to any multicomponent Coulomb system. Further, we discuss also the most difficult case and the problem with contributions linear in the interaction, the so‐called Hartree terms.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Problems of quantum‐statistical thermodynamics of plasmas: High‐ and low‐temperature limits and analyticity\",\"authors\":\"Werner Ebeling\",\"doi\":\"10.1002/ctpp.202400048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The OCP plasma model which has been the favourite plasma model of Gabor Kalman is simple but on the other side connected with some principal difficulties, and gave rise to some controversies. We discuss here the three main problems of Coulomb systems, the limit cases of the parameter : and . We show first that Taylor expansions in are in general divergent and have asymptotic character and expansions in are convergent. We study the analytic properties of the partition functions and the thermodynamic functions. Assuming analytizity with respect to the relevant physical parameter for pair interactions we can show that the analyticity with respect to this parameter allows to extend several OCP—properties, except the exchange functions, to many component systems by analytic continuation of the case to . In particular follows that the Taylor coefficients of analytic OCP functions may be extended to any multicomponent Coulomb system. Further, we discuss also the most difficult case and the problem with contributions linear in the interaction, the so‐called Hartree terms.\",\"PeriodicalId\":10700,\"journal\":{\"name\":\"Contributions to Plasma Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ctpp.202400048\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ctpp.202400048","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

OCP 等离子体模型是加博尔-卡尔曼(Gabor Kalman)最喜欢的等离子体模型,它虽然简单,但也存在一些主要困难,并引起了一些争议。我们在此讨论库仑系统的三个主要问题,即参数: 和 的极限情况。我们首先证明,在 的泰勒展开一般是发散的,具有渐近特性,而 在 的展开是收敛的。我们研究了分割函数和热力学函数的解析性质。假定对相互作用的相关物理参数具有可分析性,我们就可以证明对该参数的可分析性允许通过分析延续把除交换函数以外的几个 OCP 属性扩展到多组分系统。 特别是,分析 OCP 函数的泰勒系数可以扩展到任何多组分库仑系统。此外,我们还讨论了最困难的情况和在相互作用中具有线性贡献的问题,即所谓的哈特里项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problems of quantum‐statistical thermodynamics of plasmas: High‐ and low‐temperature limits and analyticity
The OCP plasma model which has been the favourite plasma model of Gabor Kalman is simple but on the other side connected with some principal difficulties, and gave rise to some controversies. We discuss here the three main problems of Coulomb systems, the limit cases of the parameter : and . We show first that Taylor expansions in are in general divergent and have asymptotic character and expansions in are convergent. We study the analytic properties of the partition functions and the thermodynamic functions. Assuming analytizity with respect to the relevant physical parameter for pair interactions we can show that the analyticity with respect to this parameter allows to extend several OCP—properties, except the exchange functions, to many component systems by analytic continuation of the case to . In particular follows that the Taylor coefficients of analytic OCP functions may be extended to any multicomponent Coulomb system. Further, we discuss also the most difficult case and the problem with contributions linear in the interaction, the so‐called Hartree terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信