通过整合先进的机器学习模型和各种数据,改进对整个美国大陆的溪流预测

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Kshitij Tayal, Arvind Renganathan, Dan Lu
{"title":"通过整合先进的机器学习模型和各种数据,改进对整个美国大陆的溪流预测","authors":"Kshitij Tayal, Arvind Renganathan, Dan Lu","doi":"10.1088/1748-9326/ad6fb7","DOIUrl":null,"url":null,"abstract":"Accurate streamflow prediction is crucial to understand climate impacts on water resources and develop effective adaption strategies. A global long short-term memory (LSTM) model, using data from multiple basins, can enhance streamflow prediction, yet acquiring detailed basin attributes remains a challenge. To overcome this, we introduce the Geo-vision transformer (ViT)-LSTM model, a novel approach that enriches LSTM predictions by integrating basin attributes derived from remote sensing with a ViT architecture. Applied to 531 basins across the Contiguous United States, our method demonstrated superior prediction accuracy in both temporal and spatiotemporal extrapolation scenarios. Geo-ViT-LSTM marks a significant advancement in land surface modeling, providing a more comprehensive and effective tool for better understanding the environment responses to climate change.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"109 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving streamflow predictions across CONUS by integrating advanced machine learning models and diverse data\",\"authors\":\"Kshitij Tayal, Arvind Renganathan, Dan Lu\",\"doi\":\"10.1088/1748-9326/ad6fb7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate streamflow prediction is crucial to understand climate impacts on water resources and develop effective adaption strategies. A global long short-term memory (LSTM) model, using data from multiple basins, can enhance streamflow prediction, yet acquiring detailed basin attributes remains a challenge. To overcome this, we introduce the Geo-vision transformer (ViT)-LSTM model, a novel approach that enriches LSTM predictions by integrating basin attributes derived from remote sensing with a ViT architecture. Applied to 531 basins across the Contiguous United States, our method demonstrated superior prediction accuracy in both temporal and spatiotemporal extrapolation scenarios. Geo-ViT-LSTM marks a significant advancement in land surface modeling, providing a more comprehensive and effective tool for better understanding the environment responses to climate change.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad6fb7\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad6fb7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确的流量预测对于了解气候对水资源的影响和制定有效的适应战略至关重要。使用来自多个流域的数据的全球长短期记忆(LSTM)模型可以加强对溪流的预测,但获取详细的流域属性仍然是一项挑战。为了克服这一难题,我们引入了地理视觉转换器(ViT)-LSTM 模型,这是一种新颖的方法,通过将遥感得出的流域属性与 ViT 架构相结合来丰富 LSTM 预测。我们的方法应用于美国毗连地区的 531 个盆地,在时间和时空外推方案中都表现出了卓越的预测准确性。Geo-ViT-LSTM 标志着地表建模的重大进步,为更好地了解环境对气候变化的反应提供了更全面、更有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving streamflow predictions across CONUS by integrating advanced machine learning models and diverse data
Accurate streamflow prediction is crucial to understand climate impacts on water resources and develop effective adaption strategies. A global long short-term memory (LSTM) model, using data from multiple basins, can enhance streamflow prediction, yet acquiring detailed basin attributes remains a challenge. To overcome this, we introduce the Geo-vision transformer (ViT)-LSTM model, a novel approach that enriches LSTM predictions by integrating basin attributes derived from remote sensing with a ViT architecture. Applied to 531 basins across the Contiguous United States, our method demonstrated superior prediction accuracy in both temporal and spatiotemporal extrapolation scenarios. Geo-ViT-LSTM marks a significant advancement in land surface modeling, providing a more comprehensive and effective tool for better understanding the environment responses to climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信