Xiaomeng Wu, Yi Liu, Zongqi Yu, Jitong Jiang, Chunyan Wang, Bu Zhao
{"title":"评估中国和美国城市水与能源关系的特点","authors":"Xiaomeng Wu, Yi Liu, Zongqi Yu, Jitong Jiang, Chunyan Wang, Bu Zhao","doi":"10.1088/1748-9326/ad7475","DOIUrl":null,"url":null,"abstract":"The Water-Energy Nexus (WEN) provides a comprehensive concept for the cooperative management of resources. Although the WEN system in cities is intricately connected to socioeconomic activities, relationship between WEN and economic systems remains understudied. This study introduces a tri-dimensional Nexus Pressure Index (NPI) to assess the pressure on WEN system. Gross Domestic Product (GDP) per capita and city tiers in the urban agglomeration were used to assess the relationship between the characteristics of WEN and economic system. We conducted a case study of 296 cities in China and 1330 counties in the United States from 2012 to 2019. During the 9 year study period, on average, pressure on WEN system have relieved by 22% in China and 27% in the United States, measured by NPI. Cities with most ideal characteristics (low pressure in all dimensions) rank merely in the middle of all eight classes, with GDP per capita 74% and 85% of the highest-GDP-per-capita class in China and the US respectively. Well-performing WEN system does not yield best economic outcomes. High water pressure correlates with better economic performance in the US, while high-energy-pressure cities had GDP per capita about 50% and 70% of the class with highest GDP per capita in China and the US, respectively, suggesting stronger economic constraints from energy stress. Urban agglomeration analysis revealed a negative relationship between WEN and economic performance. NPI in emerging cities is 0.6–1 lower than NPI in regionally-central cities in China, while 0.2–0.5 lower in the US. These results underscore the contradiction between preferred WEN characteristics and higher economic performance, and underpin the resource curse hypothesis at city-level in the two considered giants. A sustainable approach to harmonize WEN and economic system is in urgent need.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"34 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing urban water-energy nexus characteristics in China and the US\",\"authors\":\"Xiaomeng Wu, Yi Liu, Zongqi Yu, Jitong Jiang, Chunyan Wang, Bu Zhao\",\"doi\":\"10.1088/1748-9326/ad7475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Water-Energy Nexus (WEN) provides a comprehensive concept for the cooperative management of resources. Although the WEN system in cities is intricately connected to socioeconomic activities, relationship between WEN and economic systems remains understudied. This study introduces a tri-dimensional Nexus Pressure Index (NPI) to assess the pressure on WEN system. Gross Domestic Product (GDP) per capita and city tiers in the urban agglomeration were used to assess the relationship between the characteristics of WEN and economic system. We conducted a case study of 296 cities in China and 1330 counties in the United States from 2012 to 2019. During the 9 year study period, on average, pressure on WEN system have relieved by 22% in China and 27% in the United States, measured by NPI. Cities with most ideal characteristics (low pressure in all dimensions) rank merely in the middle of all eight classes, with GDP per capita 74% and 85% of the highest-GDP-per-capita class in China and the US respectively. Well-performing WEN system does not yield best economic outcomes. High water pressure correlates with better economic performance in the US, while high-energy-pressure cities had GDP per capita about 50% and 70% of the class with highest GDP per capita in China and the US, respectively, suggesting stronger economic constraints from energy stress. Urban agglomeration analysis revealed a negative relationship between WEN and economic performance. NPI in emerging cities is 0.6–1 lower than NPI in regionally-central cities in China, while 0.2–0.5 lower in the US. These results underscore the contradiction between preferred WEN characteristics and higher economic performance, and underpin the resource curse hypothesis at city-level in the two considered giants. A sustainable approach to harmonize WEN and economic system is in urgent need.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad7475\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad7475","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessing urban water-energy nexus characteristics in China and the US
The Water-Energy Nexus (WEN) provides a comprehensive concept for the cooperative management of resources. Although the WEN system in cities is intricately connected to socioeconomic activities, relationship between WEN and economic systems remains understudied. This study introduces a tri-dimensional Nexus Pressure Index (NPI) to assess the pressure on WEN system. Gross Domestic Product (GDP) per capita and city tiers in the urban agglomeration were used to assess the relationship between the characteristics of WEN and economic system. We conducted a case study of 296 cities in China and 1330 counties in the United States from 2012 to 2019. During the 9 year study period, on average, pressure on WEN system have relieved by 22% in China and 27% in the United States, measured by NPI. Cities with most ideal characteristics (low pressure in all dimensions) rank merely in the middle of all eight classes, with GDP per capita 74% and 85% of the highest-GDP-per-capita class in China and the US respectively. Well-performing WEN system does not yield best economic outcomes. High water pressure correlates with better economic performance in the US, while high-energy-pressure cities had GDP per capita about 50% and 70% of the class with highest GDP per capita in China and the US, respectively, suggesting stronger economic constraints from energy stress. Urban agglomeration analysis revealed a negative relationship between WEN and economic performance. NPI in emerging cities is 0.6–1 lower than NPI in regionally-central cities in China, while 0.2–0.5 lower in the US. These results underscore the contradiction between preferred WEN characteristics and higher economic performance, and underpin the resource curse hypothesis at city-level in the two considered giants. A sustainable approach to harmonize WEN and economic system is in urgent need.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.