{"title":"用于可见光区域的基于 MXene 的宽带 Metasurafce 吸收器","authors":"Neda Daliran, Abdollah Hassanzadeh","doi":"10.1007/s11468-024-02519-7","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, controlling the light reflection and transmission by metasurface nanostructures opens pathways for efficient energy harvesting in nanophotonics and optoelectronic devices. This paper demonstrates a metasurface broadband absorber in the visible wavelength region of 400–800 nm using two-dimensional titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) MXene. A high average absorption of 97.85% over a wide wavelength region of the incident light (0.4 µm) is achieved. This significant absorption is due to the strong localized surface plasmon caused by the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> periodic nanoarrays top-mounted on SiO<sub>2</sub>/Au/glass layers. The proposed MXene-based absorber also shows broadband and high average absorption for both transverse electric (TE) and transverse magnetic (TM) polarizations under a wide range of oblique incidence and azimuthal light angles, especially it reaches over 99% for TM polarization in some ranges. The proposed absorber can be used in photodetectors, sensors, and applications where the incident angle and/or polarization are constantly changing.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband MXene-Based Metasurafce Absorber for Visible Region\",\"authors\":\"Neda Daliran, Abdollah Hassanzadeh\",\"doi\":\"10.1007/s11468-024-02519-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, controlling the light reflection and transmission by metasurface nanostructures opens pathways for efficient energy harvesting in nanophotonics and optoelectronic devices. This paper demonstrates a metasurface broadband absorber in the visible wavelength region of 400–800 nm using two-dimensional titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) MXene. A high average absorption of 97.85% over a wide wavelength region of the incident light (0.4 µm) is achieved. This significant absorption is due to the strong localized surface plasmon caused by the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> periodic nanoarrays top-mounted on SiO<sub>2</sub>/Au/glass layers. The proposed MXene-based absorber also shows broadband and high average absorption for both transverse electric (TE) and transverse magnetic (TM) polarizations under a wide range of oblique incidence and azimuthal light angles, especially it reaches over 99% for TM polarization in some ranges. The proposed absorber can be used in photodetectors, sensors, and applications where the incident angle and/or polarization are constantly changing.</p>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11468-024-02519-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02519-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Broadband MXene-Based Metasurafce Absorber for Visible Region
Nowadays, controlling the light reflection and transmission by metasurface nanostructures opens pathways for efficient energy harvesting in nanophotonics and optoelectronic devices. This paper demonstrates a metasurface broadband absorber in the visible wavelength region of 400–800 nm using two-dimensional titanium carbide (Ti3C2Tx) MXene. A high average absorption of 97.85% over a wide wavelength region of the incident light (0.4 µm) is achieved. This significant absorption is due to the strong localized surface plasmon caused by the Ti3C2Tx periodic nanoarrays top-mounted on SiO2/Au/glass layers. The proposed MXene-based absorber also shows broadband and high average absorption for both transverse electric (TE) and transverse magnetic (TM) polarizations under a wide range of oblique incidence and azimuthal light angles, especially it reaches over 99% for TM polarization in some ranges. The proposed absorber can be used in photodetectors, sensors, and applications where the incident angle and/or polarization are constantly changing.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.