利用银-金-石墨烯异质结构进行血红蛋白定量分析的太赫兹等离子体生物传感器,以及用于性能优化的机器学习算法

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL
Jacob Wekalao, Ngaira Mandela, Costable Lefu, Obed Apochi, Calistus Wamalwa, Wesley Langat
{"title":"利用银-金-石墨烯异质结构进行血红蛋白定量分析的太赫兹等离子体生物传感器,以及用于性能优化的机器学习算法","authors":"Jacob Wekalao, Ngaira Mandela, Costable Lefu, Obed Apochi, Calistus Wamalwa, Wesley Langat","doi":"10.1007/s11468-024-02520-0","DOIUrl":null,"url":null,"abstract":"<p>This investigation presents the design, simulation, and performance analysis of a terahertz-based biosensor for hemoglobin detection. The sensor architecture incorporates a synergistic combination of graphene, gold, and silver metasurfaces in a hierarchical resonator structure. Extensive parametric analysis was conducted to optimize the sensor's performance characteristics. The optimized sensor demonstrates high sensitivity, achieving up to 1000 GHzRIU<sup>−1</sup>, with a figure of merit of 3.289 RIU<sup>−1</sup>. Experimental results indicate effective detection of hemoglobin concentrations ranging from 10 to 40 g/L, corresponding to refractive indices between 1.34 and 1.43. Electromagnetic field distribution analysis exemplifies peak absorption at 0.65 THz. Furthermore, the sensor’s potential for binary encoding applications was evaluated with remarkable performance. Machine learning optimization, employing a decision tree regressor, demonstrates an optimal <i>R</i><sup>2</sup> score of 100% across various parameter combinations, suggesting potential for the development of accurate sensing systems. The proposed sensor design represents a significant advancement in terahertz biosensing technology, with implications for enhanced medical diagnostics and biomedical research applications.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"41 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz Plasmonic Biosensor Leveraging Ag-Au-Graphene Heterostructures for Quantitative Hemoglobin Analysis with Machine Learning Algorithms for Performance Optimization\",\"authors\":\"Jacob Wekalao, Ngaira Mandela, Costable Lefu, Obed Apochi, Calistus Wamalwa, Wesley Langat\",\"doi\":\"10.1007/s11468-024-02520-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This investigation presents the design, simulation, and performance analysis of a terahertz-based biosensor for hemoglobin detection. The sensor architecture incorporates a synergistic combination of graphene, gold, and silver metasurfaces in a hierarchical resonator structure. Extensive parametric analysis was conducted to optimize the sensor's performance characteristics. The optimized sensor demonstrates high sensitivity, achieving up to 1000 GHzRIU<sup>−1</sup>, with a figure of merit of 3.289 RIU<sup>−1</sup>. Experimental results indicate effective detection of hemoglobin concentrations ranging from 10 to 40 g/L, corresponding to refractive indices between 1.34 and 1.43. Electromagnetic field distribution analysis exemplifies peak absorption at 0.65 THz. Furthermore, the sensor’s potential for binary encoding applications was evaluated with remarkable performance. Machine learning optimization, employing a decision tree regressor, demonstrates an optimal <i>R</i><sup>2</sup> score of 100% across various parameter combinations, suggesting potential for the development of accurate sensing systems. The proposed sensor design represents a significant advancement in terahertz biosensing technology, with implications for enhanced medical diagnostics and biomedical research applications.</p>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11468-024-02520-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02520-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种基于太赫兹的血红蛋白检测生物传感器的设计、模拟和性能分析。传感器结构将石墨烯、金和银元表面协同组合在分层谐振器结构中。为了优化传感器的性能特征,我们进行了广泛的参数分析。优化后的传感器具有很高的灵敏度,可达到 1000 GHzRIU-1,优点系数为 3.289 RIU-1。实验结果表明,可有效检测 10 至 40 g/L 的血红蛋白浓度,折射率介于 1.34 和 1.43 之间。电磁场分布分析表明,吸收峰值为 0.65 太赫兹。此外,还对传感器在二进制编码应用方面的潜力进行了评估,结果表明该传感器性能卓越。利用决策树回归器进行的机器学习优化表明,在各种参数组合中,最佳 R2 得分为 100%,这表明该传感器具有开发精确传感系统的潜力。拟议的传感器设计代表了太赫兹生物传感技术的重大进步,对增强医疗诊断和生物医学研究应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Terahertz Plasmonic Biosensor Leveraging Ag-Au-Graphene Heterostructures for Quantitative Hemoglobin Analysis with Machine Learning Algorithms for Performance Optimization

Terahertz Plasmonic Biosensor Leveraging Ag-Au-Graphene Heterostructures for Quantitative Hemoglobin Analysis with Machine Learning Algorithms for Performance Optimization

This investigation presents the design, simulation, and performance analysis of a terahertz-based biosensor for hemoglobin detection. The sensor architecture incorporates a synergistic combination of graphene, gold, and silver metasurfaces in a hierarchical resonator structure. Extensive parametric analysis was conducted to optimize the sensor's performance characteristics. The optimized sensor demonstrates high sensitivity, achieving up to 1000 GHzRIU−1, with a figure of merit of 3.289 RIU−1. Experimental results indicate effective detection of hemoglobin concentrations ranging from 10 to 40 g/L, corresponding to refractive indices between 1.34 and 1.43. Electromagnetic field distribution analysis exemplifies peak absorption at 0.65 THz. Furthermore, the sensor’s potential for binary encoding applications was evaluated with remarkable performance. Machine learning optimization, employing a decision tree regressor, demonstrates an optimal R2 score of 100% across various parameter combinations, suggesting potential for the development of accurate sensing systems. The proposed sensor design represents a significant advancement in terahertz biosensing technology, with implications for enhanced medical diagnostics and biomedical research applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信