{"title":"水热碳化工艺参数对玉米秸秆水合赭石理化性质和燃烧行为的影响","authors":"Zhenghao Zhang, Xin Shen, Yingyi Zhang, Zhichen Han, Chunyin Zhang","doi":"10.1007/s11814-024-00265-4","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrothermal carbonization (HTC) is an effective method to improve the performance of biomass fuels. In this work, the reusable maize stalk (MS) hydrochars were prepared at different carbonization conditions, and the effects of carbonization parameters on physicochemical properties, recovery rate, coalification mechanism and combustion behavior of MS hydrochars were investigated. The results show that with the increase of temperature and time, the particle size, O/C and H/C ratios, flammability index and comprehensive combustion characteristic index of MS hydrochars decrease gradually, while the calorific value, ignition temperature (<i>T</i><sub><i>i</i></sub>), and burnout temperature (<i>T</i><sub><i>f</i></sub>) increase gradually. The combustibility and combustion reactivity of MS hydrochars are significantly better than anthracite. Under the optimal carbonization conditions (260 ºC, 40 min, solid–liquid ratio of 2%), MS hydrochar has a high carbon content and calorific value, and the carbon content and calorific value of MS are 66.85 and 22.36 MJ·kg<sup>−1</sup>, respectively. HTC technology can effectively transform MS biomass into high energy density solid fuel, which provides a theoretical basis for expanding the application field of hydrochars.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Hydrothermal Carbonization Process Parameters on Physicochemical Properties and Combustion Behavior of Maize Stalk Hydrochars\",\"authors\":\"Zhenghao Zhang, Xin Shen, Yingyi Zhang, Zhichen Han, Chunyin Zhang\",\"doi\":\"10.1007/s11814-024-00265-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrothermal carbonization (HTC) is an effective method to improve the performance of biomass fuels. In this work, the reusable maize stalk (MS) hydrochars were prepared at different carbonization conditions, and the effects of carbonization parameters on physicochemical properties, recovery rate, coalification mechanism and combustion behavior of MS hydrochars were investigated. The results show that with the increase of temperature and time, the particle size, O/C and H/C ratios, flammability index and comprehensive combustion characteristic index of MS hydrochars decrease gradually, while the calorific value, ignition temperature (<i>T</i><sub><i>i</i></sub>), and burnout temperature (<i>T</i><sub><i>f</i></sub>) increase gradually. The combustibility and combustion reactivity of MS hydrochars are significantly better than anthracite. Under the optimal carbonization conditions (260 ºC, 40 min, solid–liquid ratio of 2%), MS hydrochar has a high carbon content and calorific value, and the carbon content and calorific value of MS are 66.85 and 22.36 MJ·kg<sup>−1</sup>, respectively. HTC technology can effectively transform MS biomass into high energy density solid fuel, which provides a theoretical basis for expanding the application field of hydrochars.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00265-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00265-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of Hydrothermal Carbonization Process Parameters on Physicochemical Properties and Combustion Behavior of Maize Stalk Hydrochars
Hydrothermal carbonization (HTC) is an effective method to improve the performance of biomass fuels. In this work, the reusable maize stalk (MS) hydrochars were prepared at different carbonization conditions, and the effects of carbonization parameters on physicochemical properties, recovery rate, coalification mechanism and combustion behavior of MS hydrochars were investigated. The results show that with the increase of temperature and time, the particle size, O/C and H/C ratios, flammability index and comprehensive combustion characteristic index of MS hydrochars decrease gradually, while the calorific value, ignition temperature (Ti), and burnout temperature (Tf) increase gradually. The combustibility and combustion reactivity of MS hydrochars are significantly better than anthracite. Under the optimal carbonization conditions (260 ºC, 40 min, solid–liquid ratio of 2%), MS hydrochar has a high carbon content and calorific value, and the carbon content and calorific value of MS are 66.85 and 22.36 MJ·kg−1, respectively. HTC technology can effectively transform MS biomass into high energy density solid fuel, which provides a theoretical basis for expanding the application field of hydrochars.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.