基于高发光碳量子点的温室应用发光太阳能聚光器

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-09-06 DOI:10.1002/solr.202400442
Kambiz Hosseinpanahi, Mohammad Hossein Abbaspour-Fard, Mahmoud Reza Golzarian, Elaheh K. Goharshadi, Alberto Vomiero
{"title":"基于高发光碳量子点的温室应用发光太阳能聚光器","authors":"Kambiz Hosseinpanahi,&nbsp;Mohammad Hossein Abbaspour-Fard,&nbsp;Mahmoud Reza Golzarian,&nbsp;Elaheh K. Goharshadi,&nbsp;Alberto Vomiero","doi":"10.1002/solr.202400442","DOIUrl":null,"url":null,"abstract":"<p>Carbon quantum dots (CQDs) are promising luminophores for luminescent solar concentrators (LSCs) in transparent photovoltaic greenhouse covers due to their high ultraviolet (UV)-light absorption coefficient, which is vital for plant growth. Herein, high quantum yield (75%) and large Stokes shift (0.706 eV) CQDs are synthesized by a simple, fast, cheap, and mass scalable method. A comprehensive study on the LSC engineering is carried out. Thin layers of CQDs with different concentrations of 1, 3, and 5 wt% and different number of layers (1–5) are coated on glass and poly(methyl methacrylate) (PMMA) waveguides, sized 5 × 5 × 0.6 and 15 × 15 × 0.6 cm<sup>3</sup>. The best performing single-layer LCS exhibits power conversion efficiency (PCE) and optical efficiency as high as 1.6% and 6.5%, respectively (LSC size 5 × 5 × 0.6 cm<sup>3</sup>), and 1.19% and 3.27% (LSC size of 15 × 15 × 0.6 cm<sup>3</sup>), respectively. Over 90 days, stability tests show a 2% PCE decrease. Tests on a small-scale greenhouse model demonstrate that transparent photovoltaic LSC roofs not only produce electricity but also control temperature inside the greenhouse. Hence, CQD-based LSCs synthesized by the scalable method can be used in commercialization of transparent greenhouses photovoltaic covers.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400442","citationCount":"0","resultStr":"{\"title\":\"Luminescent Solar Concentrators for Greenhouse Applications Based on Highly Luminescent Carbon Quantum Dots\",\"authors\":\"Kambiz Hosseinpanahi,&nbsp;Mohammad Hossein Abbaspour-Fard,&nbsp;Mahmoud Reza Golzarian,&nbsp;Elaheh K. Goharshadi,&nbsp;Alberto Vomiero\",\"doi\":\"10.1002/solr.202400442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon quantum dots (CQDs) are promising luminophores for luminescent solar concentrators (LSCs) in transparent photovoltaic greenhouse covers due to their high ultraviolet (UV)-light absorption coefficient, which is vital for plant growth. Herein, high quantum yield (75%) and large Stokes shift (0.706 eV) CQDs are synthesized by a simple, fast, cheap, and mass scalable method. A comprehensive study on the LSC engineering is carried out. Thin layers of CQDs with different concentrations of 1, 3, and 5 wt% and different number of layers (1–5) are coated on glass and poly(methyl methacrylate) (PMMA) waveguides, sized 5 × 5 × 0.6 and 15 × 15 × 0.6 cm<sup>3</sup>. The best performing single-layer LCS exhibits power conversion efficiency (PCE) and optical efficiency as high as 1.6% and 6.5%, respectively (LSC size 5 × 5 × 0.6 cm<sup>3</sup>), and 1.19% and 3.27% (LSC size of 15 × 15 × 0.6 cm<sup>3</sup>), respectively. Over 90 days, stability tests show a 2% PCE decrease. Tests on a small-scale greenhouse model demonstrate that transparent photovoltaic LSC roofs not only produce electricity but also control temperature inside the greenhouse. Hence, CQD-based LSCs synthesized by the scalable method can be used in commercialization of transparent greenhouses photovoltaic covers.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 20\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400442\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400442\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400442","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

碳量子点(CQDs)具有很高的紫外线(UV)吸收系数,对植物生长至关重要,因此是透明光伏温室覆盖物中发光太阳能聚光器(LSCs)的理想发光体。本文采用一种简单、快速、廉价和可大规模推广的方法合成了高量子产率(75%)和大斯托克斯位移(0.706 eV)的 CQDs。对 LSC 工程进行了全面研究。在尺寸为 5 × 5 × 0.6 和 15 × 15 × 0.6 cm3 的玻璃和聚甲基丙烯酸甲酯(PMMA)波导上镀上了不同浓度(1、3 和 5 wt%)和不同层数(1-5)的 CQDs 薄层。性能最好的单层 LCS 的功率转换效率(PCE)和光学效率分别高达 1.6% 和 6.5%(LSC 尺寸为 5 × 5 × 0.6 cm3),以及 1.19% 和 3.27%(LSC 尺寸为 15 × 15 × 0.6 cm3)。90 天的稳定性测试表明,PCE 下降了 2%。对小型温室模型的测试表明,透明光伏 LSC 屋顶不仅能发电,还能控制温室内的温度。因此,采用可扩展方法合成的基于 CQD 的 LSC 可用于透明温室光伏覆盖物的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Luminescent Solar Concentrators for Greenhouse Applications Based on Highly Luminescent Carbon Quantum Dots

Luminescent Solar Concentrators for Greenhouse Applications Based on Highly Luminescent Carbon Quantum Dots

Luminescent Solar Concentrators for Greenhouse Applications Based on Highly Luminescent Carbon Quantum Dots

Carbon quantum dots (CQDs) are promising luminophores for luminescent solar concentrators (LSCs) in transparent photovoltaic greenhouse covers due to their high ultraviolet (UV)-light absorption coefficient, which is vital for plant growth. Herein, high quantum yield (75%) and large Stokes shift (0.706 eV) CQDs are synthesized by a simple, fast, cheap, and mass scalable method. A comprehensive study on the LSC engineering is carried out. Thin layers of CQDs with different concentrations of 1, 3, and 5 wt% and different number of layers (1–5) are coated on glass and poly(methyl methacrylate) (PMMA) waveguides, sized 5 × 5 × 0.6 and 15 × 15 × 0.6 cm3. The best performing single-layer LCS exhibits power conversion efficiency (PCE) and optical efficiency as high as 1.6% and 6.5%, respectively (LSC size 5 × 5 × 0.6 cm3), and 1.19% and 3.27% (LSC size of 15 × 15 × 0.6 cm3), respectively. Over 90 days, stability tests show a 2% PCE decrease. Tests on a small-scale greenhouse model demonstrate that transparent photovoltaic LSC roofs not only produce electricity but also control temperature inside the greenhouse. Hence, CQD-based LSCs synthesized by the scalable method can be used in commercialization of transparent greenhouses photovoltaic covers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信