位错和残余热张力对单片集成 InGaP/GaAs/Si 三结太阳能电池的影响

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-08-20 DOI:10.1002/solr.202400318
Yeonhwa Kim, Hyun-Beom Shin, Eunkyo Ju, May Angelu Madarang, Rafael Jumar Chu, Tsimafei Laryn, Taehee Kim, In-Hwan Lee, Ho Kwan Kang, Won Jun Choi, Daehwan Jung
{"title":"位错和残余热张力对单片集成 InGaP/GaAs/Si 三结太阳能电池的影响","authors":"Yeonhwa Kim,&nbsp;Hyun-Beom Shin,&nbsp;Eunkyo Ju,&nbsp;May Angelu Madarang,&nbsp;Rafael Jumar Chu,&nbsp;Tsimafei Laryn,&nbsp;Taehee Kim,&nbsp;In-Hwan Lee,&nbsp;Ho Kwan Kang,&nbsp;Won Jun Choi,&nbsp;Daehwan Jung","doi":"10.1002/solr.202400318","DOIUrl":null,"url":null,"abstract":"<p>Direct epitaxy of III−V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In<sub>0.10</sub>Al<sub>0.16</sub>Ga<sub>0.74</sub>As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 × 10<sup>7</sup> cm<sup>−2</sup> while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Dislocations and Residual Thermal Tension on Monolithically Integrated InGaP/GaAs/Si Triple-Junction Solar Cells\",\"authors\":\"Yeonhwa Kim,&nbsp;Hyun-Beom Shin,&nbsp;Eunkyo Ju,&nbsp;May Angelu Madarang,&nbsp;Rafael Jumar Chu,&nbsp;Tsimafei Laryn,&nbsp;Taehee Kim,&nbsp;In-Hwan Lee,&nbsp;Ho Kwan Kang,&nbsp;Won Jun Choi,&nbsp;Daehwan Jung\",\"doi\":\"10.1002/solr.202400318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct epitaxy of III−V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In<sub>0.10</sub>Al<sub>0.16</sub>Ga<sub>0.74</sub>As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 × 10<sup>7</sup> cm<sup>−2</sup> while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 18\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400318\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400318","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在硅上直接外延 III-V 材料是实现高度稳定、可扩展和高效的硅基多结太阳能电池的一种可行方法。然而,克服晶格常数和热膨胀系数不匹配分别产生的外延位错和残余热应变是一项挑战。在此,我们首次展示了利用 In0.10Al0.16Ga0.74As 数字合金位错滤波层制成的效率为 15.2% 的 InGaP/GaAs/Si 三结太阳能电池,其开路电压为 2.36 V。在硅基 n-GaAs 缓冲区中使用滤波器层可将穿线位错密度降至 4 × 107 cm-2,同时保持硅底电池的光学透明度。然后,通过与原生砷化镓衬底上共生长的 InGaP/GaAs 串联电池进行比较,系统地研究了穿线位错和残余张力对 InGaP/GaAs/Si 电池的影响。根据比较分析,提出了一种抑制材料变形和缺陷形成的策略,以实现 30% 高效率的 InGaP/GaAs/Si 三结太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impacts of Dislocations and Residual Thermal Tension on Monolithically Integrated InGaP/GaAs/Si Triple-Junction Solar Cells

Impacts of Dislocations and Residual Thermal Tension on Monolithically Integrated InGaP/GaAs/Si Triple-Junction Solar Cells

Direct epitaxy of III−V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In0.10Al0.16Ga0.74As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 × 107 cm−2 while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信