{"title":"在使用发生率和丰度数据时,对海洋鱼类地理范围变化的估计有何不同?","authors":"Yin-Zheng Lai, Ying-Chung Jimmy Lin, Chia-Ying Ko","doi":"10.1111/ddi.13919","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Geographic range shifts are a common species' response to climate change. While occurrence data are commonly used to estimate species' geographical range shifts, ongoing debate suggests that local abundance data may be increasingly important for the estimates, but few studies have investigated differences between the above two types of data. We aimed to explore whether occurrence and abundance data would result in different patterns of geographic range shifts for marine fishes.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Northeast US Continental Shelf, North Sea, and East Bering Sea.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used bottom trawl datasets since 1968 in the three large marine communities to assess whether data types would affect estimated shifts in marine fish species. The range centroids of individual species were first estimated every year and linear regressions were fitted to estimate shift rates in both longitudinal and latitudinal directions. The average range centroids of the last 5 years were used to compare differences between the data types in species' shifts. We then grouped species by traits to overview species compositions.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Significant differences in shift trends between regressions based on annual occurrence- and abundance-based range centroids were found in species' longitudinal shifts, particularly in the Northeast US Continental Shelf and North Sea. Approximately 38.5%–45.9% of fish species in the large marine communities had inconsistent shift directions when estimated by different data types. In comparison with the average range centroids of the last 5 years between the two data types, large changes were identified in the magnitudes of the shift distances towards the east and west. Fish species with inconsistent shifts between the two data types were mostly composed of commercial and demersal species.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>The results provide observed differences over decades and suggest caution on the estimation of species' geographic range shifts using occurrence and abundance data and highlight the differences for future assessments of marine species shifts under climate change.</p>\n </section>\n </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13919","citationCount":"0","resultStr":"{\"title\":\"How would estimation of geographic range shifts of marine fishes be different when using occurrence and abundance data?\",\"authors\":\"Yin-Zheng Lai, Ying-Chung Jimmy Lin, Chia-Ying Ko\",\"doi\":\"10.1111/ddi.13919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Geographic range shifts are a common species' response to climate change. While occurrence data are commonly used to estimate species' geographical range shifts, ongoing debate suggests that local abundance data may be increasingly important for the estimates, but few studies have investigated differences between the above two types of data. We aimed to explore whether occurrence and abundance data would result in different patterns of geographic range shifts for marine fishes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Northeast US Continental Shelf, North Sea, and East Bering Sea.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used bottom trawl datasets since 1968 in the three large marine communities to assess whether data types would affect estimated shifts in marine fish species. The range centroids of individual species were first estimated every year and linear regressions were fitted to estimate shift rates in both longitudinal and latitudinal directions. The average range centroids of the last 5 years were used to compare differences between the data types in species' shifts. We then grouped species by traits to overview species compositions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Significant differences in shift trends between regressions based on annual occurrence- and abundance-based range centroids were found in species' longitudinal shifts, particularly in the Northeast US Continental Shelf and North Sea. Approximately 38.5%–45.9% of fish species in the large marine communities had inconsistent shift directions when estimated by different data types. In comparison with the average range centroids of the last 5 years between the two data types, large changes were identified in the magnitudes of the shift distances towards the east and west. Fish species with inconsistent shifts between the two data types were mostly composed of commercial and demersal species.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>The results provide observed differences over decades and suggest caution on the estimation of species' geographic range shifts using occurrence and abundance data and highlight the differences for future assessments of marine species shifts under climate change.</p>\\n </section>\\n </div>\",\"PeriodicalId\":51018,\"journal\":{\"name\":\"Diversity and Distributions\",\"volume\":\"30 10\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13919\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diversity and Distributions\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ddi.13919\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity and Distributions","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ddi.13919","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
How would estimation of geographic range shifts of marine fishes be different when using occurrence and abundance data?
Aim
Geographic range shifts are a common species' response to climate change. While occurrence data are commonly used to estimate species' geographical range shifts, ongoing debate suggests that local abundance data may be increasingly important for the estimates, but few studies have investigated differences between the above two types of data. We aimed to explore whether occurrence and abundance data would result in different patterns of geographic range shifts for marine fishes.
Location
Northeast US Continental Shelf, North Sea, and East Bering Sea.
Methods
We used bottom trawl datasets since 1968 in the three large marine communities to assess whether data types would affect estimated shifts in marine fish species. The range centroids of individual species were first estimated every year and linear regressions were fitted to estimate shift rates in both longitudinal and latitudinal directions. The average range centroids of the last 5 years were used to compare differences between the data types in species' shifts. We then grouped species by traits to overview species compositions.
Results
Significant differences in shift trends between regressions based on annual occurrence- and abundance-based range centroids were found in species' longitudinal shifts, particularly in the Northeast US Continental Shelf and North Sea. Approximately 38.5%–45.9% of fish species in the large marine communities had inconsistent shift directions when estimated by different data types. In comparison with the average range centroids of the last 5 years between the two data types, large changes were identified in the magnitudes of the shift distances towards the east and west. Fish species with inconsistent shifts between the two data types were mostly composed of commercial and demersal species.
Main Conclusions
The results provide observed differences over decades and suggest caution on the estimation of species' geographic range shifts using occurrence and abundance data and highlight the differences for future assessments of marine species shifts under climate change.
期刊介绍:
Diversity and Distributions is a journal of conservation biogeography. We publish papers that deal with the application of biogeographical principles, theories, and analyses (being those concerned with the distributional dynamics of taxa and assemblages) to problems concerning the conservation of biodiversity. We no longer consider papers the sole aim of which is to describe or analyze patterns of biodiversity or to elucidate processes that generate biodiversity.