{"title":"抛物-差分系统中半波前稳定性的简单方法","authors":"Abraham Solar","doi":"10.1007/s10884-024-10371-w","DOIUrl":null,"url":null,"abstract":"<p>We consider the parabolic-difference system <span>\\( \\Big ({\\dot{u}}(t,x), v(t, x)\\Big )=\\Big (D\\, u_{xx}(t, x)\\hspace{-0.06cm}-\\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \\cdot )(x), \\,\\, g(u(t, x))+B v(t-h, \\cdot )(x)\\Big )\\)</span>, <span>\\( t>0, x\\in {{\\mathbb {R}}},\\)</span> which appears in a model for hematopoietic cells population. We prove the global stability of semi-wavefronts <span>\\((\\phi _c, \\varphi _c)\\)</span> for this system. More precisely, for an initial history <span>\\((u_0, v_0)\\)</span> we study the convergence to zero of the associated perturbation <span>\\(P(t)=(u(t)-\\phi _c, v(t)-\\varphi _c)\\)</span>, as <span>\\(t\\rightarrow +\\infty \\)</span>, in a suitable Banach space <i>Y</i>; we prove that if the initial perturbation satisfies <span>\\(P_0\\in C([-h, 0], Y)\\)</span>, then <span>\\(P(t)\\rightarrow 0\\)</span> in two cases: (i) <span>\\(v_0=\\varphi _c\\)</span>, for all <span>\\(h\\ge 0\\)</span> or (ii) <span>\\(v_0\\not \\equiv \\varphi _c\\)</span> for all <span>\\(h\\le h_*\\)</span> and some <span>\\(h_*=h_*(B)\\)</span>. This result is obtained by analyzing an abstract integral equation with infinite delay. Also, our main result allow us to obtain a result about the uniqueness of these semi-wavefronts.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Approach to Stability of Semi-wavefronts in Parabolic-Difference Systems\",\"authors\":\"Abraham Solar\",\"doi\":\"10.1007/s10884-024-10371-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the parabolic-difference system <span>\\\\( \\\\Big ({\\\\dot{u}}(t,x), v(t, x)\\\\Big )=\\\\Big (D\\\\, u_{xx}(t, x)\\\\hspace{-0.06cm}-\\\\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \\\\cdot )(x), \\\\,\\\\, g(u(t, x))+B v(t-h, \\\\cdot )(x)\\\\Big )\\\\)</span>, <span>\\\\( t>0, x\\\\in {{\\\\mathbb {R}}},\\\\)</span> which appears in a model for hematopoietic cells population. We prove the global stability of semi-wavefronts <span>\\\\((\\\\phi _c, \\\\varphi _c)\\\\)</span> for this system. More precisely, for an initial history <span>\\\\((u_0, v_0)\\\\)</span> we study the convergence to zero of the associated perturbation <span>\\\\(P(t)=(u(t)-\\\\phi _c, v(t)-\\\\varphi _c)\\\\)</span>, as <span>\\\\(t\\\\rightarrow +\\\\infty \\\\)</span>, in a suitable Banach space <i>Y</i>; we prove that if the initial perturbation satisfies <span>\\\\(P_0\\\\in C([-h, 0], Y)\\\\)</span>, then <span>\\\\(P(t)\\\\rightarrow 0\\\\)</span> in two cases: (i) <span>\\\\(v_0=\\\\varphi _c\\\\)</span>, for all <span>\\\\(h\\\\ge 0\\\\)</span> or (ii) <span>\\\\(v_0\\\\not \\\\equiv \\\\varphi _c\\\\)</span> for all <span>\\\\(h\\\\le h_*\\\\)</span> and some <span>\\\\(h_*=h_*(B)\\\\)</span>. This result is obtained by analyzing an abstract integral equation with infinite delay. Also, our main result allow us to obtain a result about the uniqueness of these semi-wavefronts.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10371-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10371-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑抛物线-差分系统 ( ( {\dot{u}}(t,x), v(t, x)\Big ) =\Big (D\, u_{xx}(t, x)\hspace{-0.06cm}-\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \cdot )(x), \,\, g(u(t, x))+B v(t-h, \cdot )(x)\Big )\), \( t>0, x\in {{\mathbb {R}},\) 这出现在一个造血细胞群模型中。我们证明了该系统的半波前沿((\phi _c, \varphi _c)\)的全局稳定性。更确切地说,对于初始历史 \((u_0, v_0)\) 我们研究了在合适的巴拿赫空间 Y 中,相关扰动 \(P(t)=(u(t)-\phi _c, v(t)-\varphi _c)\)的趋近于零的过程,即 \(t\rightarrow +\infty \);我们证明,如果初始扰动满足(P_0\in C([-h, 0], Y)),那么(P(t)\rightarrow 0\) 在两种情况下:(i) \(v_0=\varphi _c\), for all \(h\ge 0\) or (ii) \(v_0not \equiv \varphi _c\) for all \(h\le h_*\) and some \(h_*=h_*(B)\).这一结果是通过分析具有无限延迟的抽象积分方程得到的。此外,我们的主要结果还让我们得到了关于这些半波面唯一性的结果。
A Simple Approach to Stability of Semi-wavefronts in Parabolic-Difference Systems
We consider the parabolic-difference system \( \Big ({\dot{u}}(t,x), v(t, x)\Big )=\Big (D\, u_{xx}(t, x)\hspace{-0.06cm}-\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \cdot )(x), \,\, g(u(t, x))+B v(t-h, \cdot )(x)\Big )\), \( t>0, x\in {{\mathbb {R}}},\) which appears in a model for hematopoietic cells population. We prove the global stability of semi-wavefronts \((\phi _c, \varphi _c)\) for this system. More precisely, for an initial history \((u_0, v_0)\) we study the convergence to zero of the associated perturbation \(P(t)=(u(t)-\phi _c, v(t)-\varphi _c)\), as \(t\rightarrow +\infty \), in a suitable Banach space Y; we prove that if the initial perturbation satisfies \(P_0\in C([-h, 0], Y)\), then \(P(t)\rightarrow 0\) in two cases: (i) \(v_0=\varphi _c\), for all \(h\ge 0\) or (ii) \(v_0\not \equiv \varphi _c\) for all \(h\le h_*\) and some \(h_*=h_*(B)\). This result is obtained by analyzing an abstract integral equation with infinite delay. Also, our main result allow us to obtain a result about the uniqueness of these semi-wavefronts.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.