抛物-差分系统中半波前稳定性的简单方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abraham Solar
{"title":"抛物-差分系统中半波前稳定性的简单方法","authors":"Abraham Solar","doi":"10.1007/s10884-024-10371-w","DOIUrl":null,"url":null,"abstract":"<p>We consider the parabolic-difference system <span>\\( \\Big ({\\dot{u}}(t,x), v(t, x)\\Big )=\\Big (D\\, u_{xx}(t, x)\\hspace{-0.06cm}-\\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \\cdot )(x), \\,\\, g(u(t, x))+B v(t-h, \\cdot )(x)\\Big )\\)</span>, <span>\\( t&gt;0, x\\in {{\\mathbb {R}}},\\)</span> which appears in a model for hematopoietic cells population. We prove the global stability of semi-wavefronts <span>\\((\\phi _c, \\varphi _c)\\)</span> for this system. More precisely, for an initial history <span>\\((u_0, v_0)\\)</span> we study the convergence to zero of the associated perturbation <span>\\(P(t)=(u(t)-\\phi _c, v(t)-\\varphi _c)\\)</span>, as <span>\\(t\\rightarrow +\\infty \\)</span>, in a suitable Banach space <i>Y</i>; we prove that if the initial perturbation satisfies <span>\\(P_0\\in C([-h, 0], Y)\\)</span>, then <span>\\(P(t)\\rightarrow 0\\)</span> in two cases: (i) <span>\\(v_0=\\varphi _c\\)</span>, for all <span>\\(h\\ge 0\\)</span> or (ii) <span>\\(v_0\\not \\equiv \\varphi _c\\)</span> for all <span>\\(h\\le h_*\\)</span> and some <span>\\(h_*=h_*(B)\\)</span>. This result is obtained by analyzing an abstract integral equation with infinite delay. Also, our main result allow us to obtain a result about the uniqueness of these semi-wavefronts.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Approach to Stability of Semi-wavefronts in Parabolic-Difference Systems\",\"authors\":\"Abraham Solar\",\"doi\":\"10.1007/s10884-024-10371-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the parabolic-difference system <span>\\\\( \\\\Big ({\\\\dot{u}}(t,x), v(t, x)\\\\Big )=\\\\Big (D\\\\, u_{xx}(t, x)\\\\hspace{-0.06cm}-\\\\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \\\\cdot )(x), \\\\,\\\\, g(u(t, x))+B v(t-h, \\\\cdot )(x)\\\\Big )\\\\)</span>, <span>\\\\( t&gt;0, x\\\\in {{\\\\mathbb {R}}},\\\\)</span> which appears in a model for hematopoietic cells population. We prove the global stability of semi-wavefronts <span>\\\\((\\\\phi _c, \\\\varphi _c)\\\\)</span> for this system. More precisely, for an initial history <span>\\\\((u_0, v_0)\\\\)</span> we study the convergence to zero of the associated perturbation <span>\\\\(P(t)=(u(t)-\\\\phi _c, v(t)-\\\\varphi _c)\\\\)</span>, as <span>\\\\(t\\\\rightarrow +\\\\infty \\\\)</span>, in a suitable Banach space <i>Y</i>; we prove that if the initial perturbation satisfies <span>\\\\(P_0\\\\in C([-h, 0], Y)\\\\)</span>, then <span>\\\\(P(t)\\\\rightarrow 0\\\\)</span> in two cases: (i) <span>\\\\(v_0=\\\\varphi _c\\\\)</span>, for all <span>\\\\(h\\\\ge 0\\\\)</span> or (ii) <span>\\\\(v_0\\\\not \\\\equiv \\\\varphi _c\\\\)</span> for all <span>\\\\(h\\\\le h_*\\\\)</span> and some <span>\\\\(h_*=h_*(B)\\\\)</span>. This result is obtained by analyzing an abstract integral equation with infinite delay. Also, our main result allow us to obtain a result about the uniqueness of these semi-wavefronts.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10371-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10371-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑抛物线-差分系统 ( ( {\dot{u}}(t,x), v(t, x)\Big ) =\Big (D\, u_{xx}(t, x)\hspace{-0.06cm}-\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \cdot )(x), \,\, g(u(t, x))+B v(t-h, \cdot )(x)\Big )\), \( t>0, x\in {{\mathbb {R}},\) 这出现在一个造血细胞群模型中。我们证明了该系统的半波前沿((\phi _c, \varphi _c)\)的全局稳定性。更确切地说,对于初始历史 \((u_0, v_0)\) 我们研究了在合适的巴拿赫空间 Y 中,相关扰动 \(P(t)=(u(t)-\phi _c, v(t)-\varphi _c)\)的趋近于零的过程,即 \(t\rightarrow +\infty \);我们证明,如果初始扰动满足(P_0\in C([-h, 0], Y)),那么(P(t)\rightarrow 0\) 在两种情况下:(i) \(v_0=\varphi _c\), for all \(h\ge 0\) or (ii) \(v_0not \equiv \varphi _c\) for all \(h\le h_*\) and some \(h_*=h_*(B)\).这一结果是通过分析具有无限延迟的抽象积分方程得到的。此外,我们的主要结果还让我们得到了关于这些半波面唯一性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Approach to Stability of Semi-wavefronts in Parabolic-Difference Systems

We consider the parabolic-difference system \( \Big ({\dot{u}}(t,x), v(t, x)\Big )=\Big (D\, u_{xx}(t, x)\hspace{-0.06cm}-\hspace{-0.06cm}f(u(t, x))+Hv(t-h, \cdot )(x), \,\, g(u(t, x))+B v(t-h, \cdot )(x)\Big )\), \( t>0, x\in {{\mathbb {R}}},\) which appears in a model for hematopoietic cells population. We prove the global stability of semi-wavefronts \((\phi _c, \varphi _c)\) for this system. More precisely, for an initial history \((u_0, v_0)\) we study the convergence to zero of the associated perturbation \(P(t)=(u(t)-\phi _c, v(t)-\varphi _c)\), as \(t\rightarrow +\infty \), in a suitable Banach space Y; we prove that if the initial perturbation satisfies \(P_0\in C([-h, 0], Y)\), then \(P(t)\rightarrow 0\) in two cases: (i) \(v_0=\varphi _c\), for all \(h\ge 0\) or (ii) \(v_0\not \equiv \varphi _c\) for all \(h\le h_*\) and some \(h_*=h_*(B)\). This result is obtained by analyzing an abstract integral equation with infinite delay. Also, our main result allow us to obtain a result about the uniqueness of these semi-wavefronts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信