Ahmed Fouzi Tarchoun, Djalal Trache, Amir Abdelaziz, Aimen Selmani, Hani Boukeciat, Mohamed Abderrahim Hamouche, Salim Chelouche, Yash Pal, Thomas M. Klapötke
{"title":"利用真空稳定性测试研究富含高能纤维素材料的等温分解动力学","authors":"Ahmed Fouzi Tarchoun, Djalal Trache, Amir Abdelaziz, Aimen Selmani, Hani Boukeciat, Mohamed Abderrahim Hamouche, Salim Chelouche, Yash Pal, Thomas M. Klapötke","doi":"10.1007/s11144-024-02706-x","DOIUrl":null,"url":null,"abstract":"<p>In this work, the isothermal decomposition kinetics of a promising high-energy dense nitrated cellulose carbamate (NCC) was investigated, for the first time, using vacuum stability test (VST) at different isothermal temperatures. The kinetic triplet of NCC was calculated by model-fitting and model-free methods, and compared to that of the conventional nitrocellulose (NC). VST results showed that the gas pressure of the studied energetic cellulose-rich materials (NCC and NC) increased with the increase in time test, which is found more pronounced for NCC compared to NC. Furthermore, thermo-kinetic findings demonstrated that the Arrhenius parameters determined by the two performed kinetic approaches are in good concordance. Indeed, the apparent activation energy of NCC is found to be around 141 kJ/mol, which is lower than that of the common NC (<i>Eα</i> = 152 kJ/mol). The model-fitting approach revealed that the mechanism of isothermal decomposition of NCC and NC is controlled by a chemical process. Besides, a strong linear relationship between the activation energy and the logarithm of the pre-exponential factor is observed. This work provides valuable guidance for the isothermal decomposition kinetics of energetic cellulose-rich materials and further supports and complements their kinetic database.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"31 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the isothermal decomposition kinetics of energetic cellulose-rich materials using a vacuum stability test\",\"authors\":\"Ahmed Fouzi Tarchoun, Djalal Trache, Amir Abdelaziz, Aimen Selmani, Hani Boukeciat, Mohamed Abderrahim Hamouche, Salim Chelouche, Yash Pal, Thomas M. Klapötke\",\"doi\":\"10.1007/s11144-024-02706-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the isothermal decomposition kinetics of a promising high-energy dense nitrated cellulose carbamate (NCC) was investigated, for the first time, using vacuum stability test (VST) at different isothermal temperatures. The kinetic triplet of NCC was calculated by model-fitting and model-free methods, and compared to that of the conventional nitrocellulose (NC). VST results showed that the gas pressure of the studied energetic cellulose-rich materials (NCC and NC) increased with the increase in time test, which is found more pronounced for NCC compared to NC. Furthermore, thermo-kinetic findings demonstrated that the Arrhenius parameters determined by the two performed kinetic approaches are in good concordance. Indeed, the apparent activation energy of NCC is found to be around 141 kJ/mol, which is lower than that of the common NC (<i>Eα</i> = 152 kJ/mol). The model-fitting approach revealed that the mechanism of isothermal decomposition of NCC and NC is controlled by a chemical process. Besides, a strong linear relationship between the activation energy and the logarithm of the pre-exponential factor is observed. This work provides valuable guidance for the isothermal decomposition kinetics of energetic cellulose-rich materials and further supports and complements their kinetic database.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11144-024-02706-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11144-024-02706-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A study on the isothermal decomposition kinetics of energetic cellulose-rich materials using a vacuum stability test
In this work, the isothermal decomposition kinetics of a promising high-energy dense nitrated cellulose carbamate (NCC) was investigated, for the first time, using vacuum stability test (VST) at different isothermal temperatures. The kinetic triplet of NCC was calculated by model-fitting and model-free methods, and compared to that of the conventional nitrocellulose (NC). VST results showed that the gas pressure of the studied energetic cellulose-rich materials (NCC and NC) increased with the increase in time test, which is found more pronounced for NCC compared to NC. Furthermore, thermo-kinetic findings demonstrated that the Arrhenius parameters determined by the two performed kinetic approaches are in good concordance. Indeed, the apparent activation energy of NCC is found to be around 141 kJ/mol, which is lower than that of the common NC (Eα = 152 kJ/mol). The model-fitting approach revealed that the mechanism of isothermal decomposition of NCC and NC is controlled by a chemical process. Besides, a strong linear relationship between the activation energy and the logarithm of the pre-exponential factor is observed. This work provides valuable guidance for the isothermal decomposition kinetics of energetic cellulose-rich materials and further supports and complements their kinetic database.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.