典型性、熵和统计力学的一般化

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Bernat Corominas-Murtra, Rudolf Hanel, Petr Jizba
{"title":"典型性、熵和统计力学的一般化","authors":"Bernat Corominas-Murtra,&nbsp;Rudolf Hanel,&nbsp;Petr Jizba","doi":"10.1140/epjb/s10051-024-00764-7","DOIUrl":null,"url":null,"abstract":"<p>When at equilibrium, large-scale systems obey conventional thermodynamics because they belong to microscopic configurations (or states) that are <i>typical</i>. Crucially, the typical states usually represent only a small fraction of the total number of possible states, and yet the characterization of the set of typical states—the <i>typical set</i>—alone is sufficient to describe the macroscopic behavior of a given system. Consequently, the concept of typicality, and the associated <i>Asymptotic Equipartition Property</i> allow for a drastic reduction of the degrees of freedom needed for system’s statistical description. The mathematical rationale for such a simplification in the description is due to the phenomenon of <i>concentration of measure</i>. The later emerges for equilibrium configurations thanks to very strict constraints on the underlying dynamics, such as weekly interacting and (almost) independent system constituents. The question naturally arises as to whether the concentration of measure and related typicality considerations can be extended and applied to more general complex systems, and if so, what mathematical structure can be expected in the ensuing generalized thermodynamics. In this paper, we illustrate the relevance of the concept of typicality in the toy model context of the “thermalized” coin and show how this leads naturally to Shannon entropy. We also show an intriguing connection: The characterization of typical sets in terms of Rényi and Tsallis entropies naturally leads to the free energy and partition function, respectively, and makes their relationship explicit. Finally, we propose potential ways to generalize the concept of typicality to systems where the standard microscopic assumptions do not hold.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typicality, entropy and the generalization of statistical mechanics\",\"authors\":\"Bernat Corominas-Murtra,&nbsp;Rudolf Hanel,&nbsp;Petr Jizba\",\"doi\":\"10.1140/epjb/s10051-024-00764-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When at equilibrium, large-scale systems obey conventional thermodynamics because they belong to microscopic configurations (or states) that are <i>typical</i>. Crucially, the typical states usually represent only a small fraction of the total number of possible states, and yet the characterization of the set of typical states—the <i>typical set</i>—alone is sufficient to describe the macroscopic behavior of a given system. Consequently, the concept of typicality, and the associated <i>Asymptotic Equipartition Property</i> allow for a drastic reduction of the degrees of freedom needed for system’s statistical description. The mathematical rationale for such a simplification in the description is due to the phenomenon of <i>concentration of measure</i>. The later emerges for equilibrium configurations thanks to very strict constraints on the underlying dynamics, such as weekly interacting and (almost) independent system constituents. The question naturally arises as to whether the concentration of measure and related typicality considerations can be extended and applied to more general complex systems, and if so, what mathematical structure can be expected in the ensuing generalized thermodynamics. In this paper, we illustrate the relevance of the concept of typicality in the toy model context of the “thermalized” coin and show how this leads naturally to Shannon entropy. We also show an intriguing connection: The characterization of typical sets in terms of Rényi and Tsallis entropies naturally leads to the free energy and partition function, respectively, and makes their relationship explicit. Finally, we propose potential ways to generalize the concept of typicality to systems where the standard microscopic assumptions do not hold.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 8\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00764-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00764-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要当处于平衡状态时,大规模系统服从传统热力学,因为它们属于典型的微观构型(或状态)。重要的是,典型状态通常只占可能状态总数的一小部分,而典型状态集--典型集--的特征却足以描述给定系统的宏观行为。因此,典型性的概念和相关的渐近等分特性可以大大减少系统统计描述所需的自由度。这种描述简化的数学原理是由于量纲集中现象。由于对底层动力学存在非常严格的约束,例如每周都有相互作用且(几乎)独立的系统成分,因此平衡构型会出现集中测量现象。自然而然就会产生这样的问题:度量集中和相关典型性考虑是否可以扩展并应用于更一般的复杂系统;如果可以,那么随之而来的广义热力学中会出现怎样的数学结构。在本文中,我们以 "热化 "硬币的玩具模型为背景,说明了典型性概念的相关性,并展示了它如何自然地引出香农熵。我们还展示了一种有趣的联系:用雷尼熵和查里斯熵表征典型集,自然会分别引出自由能和分割函数,并使它们之间的关系变得清晰明了。最后,我们提出了将典型性概念推广到标准微观假设不成立的系统的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Typicality, entropy and the generalization of statistical mechanics

Typicality, entropy and the generalization of statistical mechanics

When at equilibrium, large-scale systems obey conventional thermodynamics because they belong to microscopic configurations (or states) that are typical. Crucially, the typical states usually represent only a small fraction of the total number of possible states, and yet the characterization of the set of typical states—the typical set—alone is sufficient to describe the macroscopic behavior of a given system. Consequently, the concept of typicality, and the associated Asymptotic Equipartition Property allow for a drastic reduction of the degrees of freedom needed for system’s statistical description. The mathematical rationale for such a simplification in the description is due to the phenomenon of concentration of measure. The later emerges for equilibrium configurations thanks to very strict constraints on the underlying dynamics, such as weekly interacting and (almost) independent system constituents. The question naturally arises as to whether the concentration of measure and related typicality considerations can be extended and applied to more general complex systems, and if so, what mathematical structure can be expected in the ensuing generalized thermodynamics. In this paper, we illustrate the relevance of the concept of typicality in the toy model context of the “thermalized” coin and show how this leads naturally to Shannon entropy. We also show an intriguing connection: The characterization of typical sets in terms of Rényi and Tsallis entropies naturally leads to the free energy and partition function, respectively, and makes their relationship explicit. Finally, we propose potential ways to generalize the concept of typicality to systems where the standard microscopic assumptions do not hold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信