KOH活化剂中尿素浸渍微孔三嗪聚合物衍生多孔碳的纳米结构,用于吸附去除水中的磺胺类药物

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Imteaz Ahmed, Sung Hwa Jhung
{"title":"KOH活化剂中尿素浸渍微孔三嗪聚合物衍生多孔碳的纳米结构,用于吸附去除水中的磺胺类药物","authors":"Imteaz Ahmed, Sung Hwa Jhung","doi":"10.1016/j.jiec.2024.08.041","DOIUrl":null,"url":null,"abstract":"A microporous covalent-organic polymer (triazine polymer, referred to as MCTP), was synthesized and subsequently carbonized, after loading urea and KOH (serving as an additional nitrogen source and activator, respectively), through high-temperature pyrolysis. This process resulted in materials named KUCDCs, which exhibited high porosity and a broader range of pore sizes compared to carbon materials produced without the addition of urea and KOH, referred to as CDC. KUCDCs, CDC, and commercially available activated carbon (AC) were evaluated for their ability to remove sulfonamide drugs, sulfamethoxazole (SMX) and sulfachlorpyridazine (SCP), from aqueous solution. Among these materials, KUCDC-800, which was carbonized at a temperature of 800 °C, demonstrated superior adsorption performances for sulfonamides, attributed to its high porosity, nitrogen content, and presence of surface oxygen groups. The adsorption capacities for SMX and SCP on KUCDC were notably higher than those on AC and MDC, with maximum capacities () of 619 and 554 mg/g for SMX and SCP, respectively. Notably, KUCDC-800 stands out as a recyclable adsorbent with the highest reported for SMX to date under near-neutral conditions. The exceptional performance of KUCDC in adsorbing SMX could be explained by its high porosity and surface functionalities for hydrogen bonding interactions with the adsorbate.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"14 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoarchitectonics of porous carbon derived from urea-impregnated microporous triazine polymer in KOH activator for adsorptive removal of sulfonamides from water\",\"authors\":\"Imteaz Ahmed, Sung Hwa Jhung\",\"doi\":\"10.1016/j.jiec.2024.08.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A microporous covalent-organic polymer (triazine polymer, referred to as MCTP), was synthesized and subsequently carbonized, after loading urea and KOH (serving as an additional nitrogen source and activator, respectively), through high-temperature pyrolysis. This process resulted in materials named KUCDCs, which exhibited high porosity and a broader range of pore sizes compared to carbon materials produced without the addition of urea and KOH, referred to as CDC. KUCDCs, CDC, and commercially available activated carbon (AC) were evaluated for their ability to remove sulfonamide drugs, sulfamethoxazole (SMX) and sulfachlorpyridazine (SCP), from aqueous solution. Among these materials, KUCDC-800, which was carbonized at a temperature of 800 °C, demonstrated superior adsorption performances for sulfonamides, attributed to its high porosity, nitrogen content, and presence of surface oxygen groups. The adsorption capacities for SMX and SCP on KUCDC were notably higher than those on AC and MDC, with maximum capacities () of 619 and 554 mg/g for SMX and SCP, respectively. Notably, KUCDC-800 stands out as a recyclable adsorbent with the highest reported for SMX to date under near-neutral conditions. The exceptional performance of KUCDC in adsorbing SMX could be explained by its high porosity and surface functionalities for hydrogen bonding interactions with the adsorbate.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.08.041\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.041","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合成了一种微孔共价有机聚合物(三嗪聚合物,简称 MCTP),并在加入尿素和 KOH(分别作为额外的氮源和活化剂)后,通过高温热解进行碳化。与未添加尿素和 KOH 的碳材料(称为 CDC)相比,KUCDCs 具有高孔隙率和更宽的孔径范围。我们对 KUCDCs、CDC 和市售活性炭 (AC) 从水溶液中去除磺胺类药物(磺胺甲噁唑 (SMX) 和磺胺氯哒嗪 (SCP))的能力进行了评估。在这些材料中,在 800 °C 温度下碳化的 KUCDC-800 对磺胺类药物具有卓越的吸附性能,这归功于它的高孔隙率、氮含量和表面氧基团的存在。KUCDC 对 SMX 和 SCP 的吸附容量明显高于 AC 和 MDC,SMX 和 SCP 的最大吸附容量()分别为 619 和 554 mg/g。值得注意的是,KUCDC-800 是一种可回收的吸附剂,在接近中性的条件下,其对 SMX 的吸附量是迄今为止报告的最高值。KUCDC 在吸附 SMX 方面的优异性能可归因于它的高孔隙率以及与吸附剂发生氢键相互作用的表面功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoarchitectonics of porous carbon derived from urea-impregnated microporous triazine polymer in KOH activator for adsorptive removal of sulfonamides from water
A microporous covalent-organic polymer (triazine polymer, referred to as MCTP), was synthesized and subsequently carbonized, after loading urea and KOH (serving as an additional nitrogen source and activator, respectively), through high-temperature pyrolysis. This process resulted in materials named KUCDCs, which exhibited high porosity and a broader range of pore sizes compared to carbon materials produced without the addition of urea and KOH, referred to as CDC. KUCDCs, CDC, and commercially available activated carbon (AC) were evaluated for their ability to remove sulfonamide drugs, sulfamethoxazole (SMX) and sulfachlorpyridazine (SCP), from aqueous solution. Among these materials, KUCDC-800, which was carbonized at a temperature of 800 °C, demonstrated superior adsorption performances for sulfonamides, attributed to its high porosity, nitrogen content, and presence of surface oxygen groups. The adsorption capacities for SMX and SCP on KUCDC were notably higher than those on AC and MDC, with maximum capacities () of 619 and 554 mg/g for SMX and SCP, respectively. Notably, KUCDC-800 stands out as a recyclable adsorbent with the highest reported for SMX to date under near-neutral conditions. The exceptional performance of KUCDC in adsorbing SMX could be explained by its high porosity and surface functionalities for hydrogen bonding interactions with the adsorbate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信