{"title":"用于 pH 值响应性给药的油酸稳定钴铁氧体 @MCM-41/ 纳米复合材料的合成与表征","authors":"Sat Septian Dwitya, Kuen-Song Lin, Meng-Tzu Weng, Ndumiso Vukile Mdlovu, Ming-Tao Yang, Chun-Ming Wu","doi":"10.1016/j.jiec.2024.08.036","DOIUrl":null,"url":null,"abstract":"This study presents composite nanoparticles combining cobalt ferrites-oleic acid (CF-OA) and mesoporous silica (MCM-41) for drug delivery. Temperature-dependent analyses at 25 and 42 °C reveal distinct alterations in particle size and distribution, emphasizing the role of oleate complexes in stabilizing the nanocomposites. Power of Laws calculations (n = 0.58, m = 0.44) assessed diffusion and matrix erosion effects, highlighting the pH-responsive behavior. Results showed CF-OA@MCM-41with nanometric scale and predominantly spherical morphology influenced by temperature variations. Nitrogen BET analysis revealed a surface area of 542.1 mg and a pore volume of 1.1 cmg. Drug release studies demonstrated controlled doxorubicin (DOX) release from CF-OA@MCM-41. In vivo studies showed significant tumor growth suppression (liver cancer): average tumor volume in D-C@M group was 167.8 mm after 21 days, compared to 1953.8 mm, 1203.6 mm, and 269 mm for PBS, CF-OA@MCM-41, and DOX alone respectively. In vitro, a 3 µg mL concentration showed no significant 293 T cell viability change and increased HEP G2 cell viability. Significant HEP G2 cell viability inhibition occurred at 1 and 2 µg mL CF-OA@MCM-41 carrying DOX, with p-values < 0.01 and < 0.001. CF-OA@MCM-41 nanoparticles exhibit promising potential for targeted cancer therapy due to their pH sensitivity and controlled drug release capabilities.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"25 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of oleic acid-stabilized cobalt ferrite @MCM-41/nanocomposites for pH-responsive drug delivery\",\"authors\":\"Sat Septian Dwitya, Kuen-Song Lin, Meng-Tzu Weng, Ndumiso Vukile Mdlovu, Ming-Tao Yang, Chun-Ming Wu\",\"doi\":\"10.1016/j.jiec.2024.08.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents composite nanoparticles combining cobalt ferrites-oleic acid (CF-OA) and mesoporous silica (MCM-41) for drug delivery. Temperature-dependent analyses at 25 and 42 °C reveal distinct alterations in particle size and distribution, emphasizing the role of oleate complexes in stabilizing the nanocomposites. Power of Laws calculations (n = 0.58, m = 0.44) assessed diffusion and matrix erosion effects, highlighting the pH-responsive behavior. Results showed CF-OA@MCM-41with nanometric scale and predominantly spherical morphology influenced by temperature variations. Nitrogen BET analysis revealed a surface area of 542.1 mg and a pore volume of 1.1 cmg. Drug release studies demonstrated controlled doxorubicin (DOX) release from CF-OA@MCM-41. In vivo studies showed significant tumor growth suppression (liver cancer): average tumor volume in D-C@M group was 167.8 mm after 21 days, compared to 1953.8 mm, 1203.6 mm, and 269 mm for PBS, CF-OA@MCM-41, and DOX alone respectively. In vitro, a 3 µg mL concentration showed no significant 293 T cell viability change and increased HEP G2 cell viability. Significant HEP G2 cell viability inhibition occurred at 1 and 2 µg mL CF-OA@MCM-41 carrying DOX, with p-values < 0.01 and < 0.001. CF-OA@MCM-41 nanoparticles exhibit promising potential for targeted cancer therapy due to their pH sensitivity and controlled drug release capabilities.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.08.036\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and characterization of oleic acid-stabilized cobalt ferrite @MCM-41/nanocomposites for pH-responsive drug delivery
This study presents composite nanoparticles combining cobalt ferrites-oleic acid (CF-OA) and mesoporous silica (MCM-41) for drug delivery. Temperature-dependent analyses at 25 and 42 °C reveal distinct alterations in particle size and distribution, emphasizing the role of oleate complexes in stabilizing the nanocomposites. Power of Laws calculations (n = 0.58, m = 0.44) assessed diffusion and matrix erosion effects, highlighting the pH-responsive behavior. Results showed CF-OA@MCM-41with nanometric scale and predominantly spherical morphology influenced by temperature variations. Nitrogen BET analysis revealed a surface area of 542.1 mg and a pore volume of 1.1 cmg. Drug release studies demonstrated controlled doxorubicin (DOX) release from CF-OA@MCM-41. In vivo studies showed significant tumor growth suppression (liver cancer): average tumor volume in D-C@M group was 167.8 mm after 21 days, compared to 1953.8 mm, 1203.6 mm, and 269 mm for PBS, CF-OA@MCM-41, and DOX alone respectively. In vitro, a 3 µg mL concentration showed no significant 293 T cell viability change and increased HEP G2 cell viability. Significant HEP G2 cell viability inhibition occurred at 1 and 2 µg mL CF-OA@MCM-41 carrying DOX, with p-values < 0.01 and < 0.001. CF-OA@MCM-41 nanoparticles exhibit promising potential for targeted cancer therapy due to their pH sensitivity and controlled drug release capabilities.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.