{"title":"多功能 CaO 模板促进了用于超级电容器的天然 N 掺杂分层多孔碳的合成","authors":"Xikui Zhang, Zhaosheng Yu, Xiaoqian Ma, Wenchang Yue, Junjie Li, Yujing Zhang","doi":"10.1016/j.jiec.2024.08.039","DOIUrl":null,"url":null,"abstract":"N-doped porous carbon with reasonable pore size distribution is conducive to improving low specific capacitance and low ion transport efficiency. Natural N-doped hierarchical porous carbon (NNHPC) was synthesized by microwave-assisted heating using kapok tree and chlorella vulgaris as raw materials. CaO was used as a template to extend the pore channels and simultaneously enhance the retention of N atoms in NNHPC. The pyrolysis properties of the samples and surface functional groups of NNHPC were analyzed, revealing that CaO enhanced the creation of nitrogenous compounds in the coke by inhibiting protein nitrogen decomposition. It led to a 74.45 % increase in N atom retention. When the addition ratio of CaO to biomass is 1:10, the optimal sample NNHPC-1CaO exhibits the highest specific surface area (SSA) of 3117.73 m/g, accompanied by a microporous volume of 0.71 cm/g. Therefore, NNHPC-1CaO exhibits the highest specific capacitance of 429.18 F/g, which still achieves excellent rate performance with 69.53 % at 20 A/g. The symmetric supercapacitor achieves a best energy density of 11.01 Wh/kg at 125 W/kg.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"58 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional CaO template promotes the synthesis of natural N-doped hierarchical porous carbon for supercapacitors\",\"authors\":\"Xikui Zhang, Zhaosheng Yu, Xiaoqian Ma, Wenchang Yue, Junjie Li, Yujing Zhang\",\"doi\":\"10.1016/j.jiec.2024.08.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N-doped porous carbon with reasonable pore size distribution is conducive to improving low specific capacitance and low ion transport efficiency. Natural N-doped hierarchical porous carbon (NNHPC) was synthesized by microwave-assisted heating using kapok tree and chlorella vulgaris as raw materials. CaO was used as a template to extend the pore channels and simultaneously enhance the retention of N atoms in NNHPC. The pyrolysis properties of the samples and surface functional groups of NNHPC were analyzed, revealing that CaO enhanced the creation of nitrogenous compounds in the coke by inhibiting protein nitrogen decomposition. It led to a 74.45 % increase in N atom retention. When the addition ratio of CaO to biomass is 1:10, the optimal sample NNHPC-1CaO exhibits the highest specific surface area (SSA) of 3117.73 m/g, accompanied by a microporous volume of 0.71 cm/g. Therefore, NNHPC-1CaO exhibits the highest specific capacitance of 429.18 F/g, which still achieves excellent rate performance with 69.53 % at 20 A/g. The symmetric supercapacitor achieves a best energy density of 11.01 Wh/kg at 125 W/kg.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.08.039\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.039","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional CaO template promotes the synthesis of natural N-doped hierarchical porous carbon for supercapacitors
N-doped porous carbon with reasonable pore size distribution is conducive to improving low specific capacitance and low ion transport efficiency. Natural N-doped hierarchical porous carbon (NNHPC) was synthesized by microwave-assisted heating using kapok tree and chlorella vulgaris as raw materials. CaO was used as a template to extend the pore channels and simultaneously enhance the retention of N atoms in NNHPC. The pyrolysis properties of the samples and surface functional groups of NNHPC were analyzed, revealing that CaO enhanced the creation of nitrogenous compounds in the coke by inhibiting protein nitrogen decomposition. It led to a 74.45 % increase in N atom retention. When the addition ratio of CaO to biomass is 1:10, the optimal sample NNHPC-1CaO exhibits the highest specific surface area (SSA) of 3117.73 m/g, accompanied by a microporous volume of 0.71 cm/g. Therefore, NNHPC-1CaO exhibits the highest specific capacitance of 429.18 F/g, which still achieves excellent rate performance with 69.53 % at 20 A/g. The symmetric supercapacitor achieves a best energy density of 11.01 Wh/kg at 125 W/kg.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.