对配备双相热流器的多管式降膜蒸馏塔进行中试规模测试,以此作为苦咸水和海水淡化的新替代方案

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
José Luiz Francisco Alves, Samaira Kraus, Eduardo Carpes Dib, Guilherme Davi Mumbach, Ricardo Antonio Francisco Machado, Cintia Marangoni
{"title":"对配备双相热流器的多管式降膜蒸馏塔进行中试规模测试,以此作为苦咸水和海水淡化的新替代方案","authors":"José Luiz Francisco Alves, Samaira Kraus, Eduardo Carpes Dib, Guilherme Davi Mumbach, Ricardo Antonio Francisco Machado, Cintia Marangoni","doi":"10.1016/j.jiec.2024.08.044","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative technology for desalinating brackish water and seawater using a multi-tube type falling film distillation column integrated with a biphasic thermosyphon. Based on the literature survey, this proposal has not been previously explored. In this study, the viability of the pilot-scale application of this technology for desalination was tested, and the process performance was evaluated in terms of distillate flow rate, salinity removal, and energy consumption, considering different experimental conditions. Synthetic solutions containing 10.0 and 35.0 g/L of sodium chloride were used to simulate brackish water and seawater salinities, respectively. The thermal desalination pilot plant integrating a compact falling film distillation column and a biphasic thermosyphon demonstrated high effectiveness, consistently producing desalinated water with a conductivity below 10 μS cm. Considering both concentrations, the optimal condition for desalinated water production was a feed temperature of 85 °C, a vapor chamber temperature of 121 °C, and an energy consumption of 16 kW. This new technological option’s energy consumption is approximately 33 % lower than that of a simulated flash distillation column operating under similar conditions. In conclusion, this study presents promising results, establishing falling film distillation technology as a viable alternative for desalinating brackish water and seawater.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"3 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pilot-scale testing of a multi-tube type falling film distillation column equipped with a biphasic thermosyphon as a new alternative for the desalination of brackish water and seawater\",\"authors\":\"José Luiz Francisco Alves, Samaira Kraus, Eduardo Carpes Dib, Guilherme Davi Mumbach, Ricardo Antonio Francisco Machado, Cintia Marangoni\",\"doi\":\"10.1016/j.jiec.2024.08.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an innovative technology for desalinating brackish water and seawater using a multi-tube type falling film distillation column integrated with a biphasic thermosyphon. Based on the literature survey, this proposal has not been previously explored. In this study, the viability of the pilot-scale application of this technology for desalination was tested, and the process performance was evaluated in terms of distillate flow rate, salinity removal, and energy consumption, considering different experimental conditions. Synthetic solutions containing 10.0 and 35.0 g/L of sodium chloride were used to simulate brackish water and seawater salinities, respectively. The thermal desalination pilot plant integrating a compact falling film distillation column and a biphasic thermosyphon demonstrated high effectiveness, consistently producing desalinated water with a conductivity below 10 μS cm. Considering both concentrations, the optimal condition for desalinated water production was a feed temperature of 85 °C, a vapor chamber temperature of 121 °C, and an energy consumption of 16 kW. This new technological option’s energy consumption is approximately 33 % lower than that of a simulated flash distillation column operating under similar conditions. In conclusion, this study presents promising results, establishing falling film distillation technology as a viable alternative for desalinating brackish water and seawater.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.08.044\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用多管式降膜式蒸馏塔与双相热流器相结合来淡化苦咸水和海水的创新技术。根据文献调查,这一建议以前从未被探讨过。本研究测试了该技术在海水淡化中试规模应用的可行性,并根据不同的实验条件,从蒸馏物流速、盐度去除率和能耗等方面评估了工艺性能。合成溶液中分别含有 10.0 和 35.0 克/升的氯化钠,用于模拟苦咸水和海水的盐度。集成了紧凑型降膜蒸馏塔和双相热吸附器的热淡化中试设备表现出很高的效率,能稳定地生产出电导率低于 10 μS cm 的淡化水。考虑到两种浓度,生产淡化水的最佳条件是进水温度为 85 °C,蒸汽室温度为 121 °C,能耗为 16 千瓦。这种新技术方案的能耗比模拟闪蒸塔在类似条件下的能耗低约 33%。总之,这项研究取得了可喜的成果,将降膜式蒸馏技术确立为淡化苦咸水和海水的可行替代技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pilot-scale testing of a multi-tube type falling film distillation column equipped with a biphasic thermosyphon as a new alternative for the desalination of brackish water and seawater
This paper proposes an innovative technology for desalinating brackish water and seawater using a multi-tube type falling film distillation column integrated with a biphasic thermosyphon. Based on the literature survey, this proposal has not been previously explored. In this study, the viability of the pilot-scale application of this technology for desalination was tested, and the process performance was evaluated in terms of distillate flow rate, salinity removal, and energy consumption, considering different experimental conditions. Synthetic solutions containing 10.0 and 35.0 g/L of sodium chloride were used to simulate brackish water and seawater salinities, respectively. The thermal desalination pilot plant integrating a compact falling film distillation column and a biphasic thermosyphon demonstrated high effectiveness, consistently producing desalinated water with a conductivity below 10 μS cm. Considering both concentrations, the optimal condition for desalinated water production was a feed temperature of 85 °C, a vapor chamber temperature of 121 °C, and an energy consumption of 16 kW. This new technological option’s energy consumption is approximately 33 % lower than that of a simulated flash distillation column operating under similar conditions. In conclusion, this study presents promising results, establishing falling film distillation technology as a viable alternative for desalinating brackish water and seawater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信