利用自适应灰色预测区间模型量化实时交通状况的不确定性

IF 3.6 2区 工程技术 Q2 TRANSPORTATION
Zhanguo Song, Xinran Wang, Wei Huang, Meiye Li, Xiaobin Zhong, Jianhua Guo
{"title":"利用自适应灰色预测区间模型量化实时交通状况的不确定性","authors":"Zhanguo Song, Xinran Wang, Wei Huang, Meiye Li, Xiaobin Zhong, Jianhua Guo","doi":"10.1080/23249935.2024.2394522","DOIUrl":null,"url":null,"abstract":"Uncertainty quantification is important for making reliable transportation decisions. For grey-based uncertainty quantification approaches, the data classification methods for most models cannot yi...","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time traffic condition uncertainty quantification using adaptive grey prediction interval model\",\"authors\":\"Zhanguo Song, Xinran Wang, Wei Huang, Meiye Li, Xiaobin Zhong, Jianhua Guo\",\"doi\":\"10.1080/23249935.2024.2394522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty quantification is important for making reliable transportation decisions. For grey-based uncertainty quantification approaches, the data classification methods for most models cannot yi...\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23249935.2024.2394522\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23249935.2024.2394522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

不确定性量化对于做出可靠的交通决策非常重要。对于基于灰色的不确定性量化方法,大多数模型的数据分类方法都无法对不确定性进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time traffic condition uncertainty quantification using adaptive grey prediction interval model
Uncertainty quantification is important for making reliable transportation decisions. For grey-based uncertainty quantification approaches, the data classification methods for most models cannot yi...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信