微波辐照辅助高效合成苯并二氧喹喔啉及其供体变异衍生物,实现长效发射和高效双极电荷载流子传输

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Liliia Deva, Mariia Stanitska, Levani Skhirtladze, Amjad Ali, Glib Baryshnikov, Dmytro Volyniuk, Stepan Kutsiy, Mykola Obushak, Monika Cekaviciute, Pavlo Stakhira, Juozas Vidas Grazulevicius
{"title":"微波辐照辅助高效合成苯并二氧喹喔啉及其供体变异衍生物,实现长效发射和高效双极电荷载流子传输","authors":"Liliia Deva, Mariia Stanitska, Levani Skhirtladze, Amjad Ali, Glib Baryshnikov, Dmytro Volyniuk, Stepan Kutsiy, Mykola Obushak, Monika Cekaviciute, Pavlo Stakhira, Juozas Vidas Grazulevicius","doi":"10.1021/acsmaterialsau.4c00050","DOIUrl":null,"url":null,"abstract":"To enhance the usually low-charge carrier mobilities of highly twisted donor–acceptor-type compounds that exhibit thermally activated delayed fluorescence, we designed a rodlike acceptor benzodioxinoquinoxaline. This acceptor and two donor–acceptor–donor derivatives were synthesized via microwave Buchwald–Hartwig cross-coupling reactions with yields of up to 91%. The compounds exhibit three different types of photoluminescence, which is well-explained by quantum chemical calculations. Benzodioxinoquinoxaline shows blue fluorescence, with a very short lifetime of 0.64 ns. Its derivatives exhibit either green solid-state-enhanced thermally activated delayed fluorescence (SSE-TADF) or room-temperature phosphorescence (RTP) with lifetimes approaching 7 ms. When molecularly dispersed in a polymeric host, the compounds show a photoluminescence quantum yield close to 60%. The derivatives containing acridine or phenoxazine moieties exhibit bipolar charge transport. At an electric field of 5.8 × 10<sup>5</sup> V/cm, hole and electron mobilities of the phenoxazine-containing compound reach 3.2 × 10<sup>–4</sup> and 1.5 × 10<sup>–4</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, respectively. Among the studied SSE-TADF-based organic light-emitting diodes, the device containing this compound shows the highest external quantum efficiency of 12.3% due to the good charge-transporting and SSE-TADF parameters of the emitter.","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"1 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Microwave Irradiation-Assisted Synthesis of Benzodioxinoquinoxaline and Its Donor-Variegated Derivatives Enabling Long-Lived Emission and Efficient Bipolar Charge Carrier Transport\",\"authors\":\"Liliia Deva, Mariia Stanitska, Levani Skhirtladze, Amjad Ali, Glib Baryshnikov, Dmytro Volyniuk, Stepan Kutsiy, Mykola Obushak, Monika Cekaviciute, Pavlo Stakhira, Juozas Vidas Grazulevicius\",\"doi\":\"10.1021/acsmaterialsau.4c00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the usually low-charge carrier mobilities of highly twisted donor–acceptor-type compounds that exhibit thermally activated delayed fluorescence, we designed a rodlike acceptor benzodioxinoquinoxaline. This acceptor and two donor–acceptor–donor derivatives were synthesized via microwave Buchwald–Hartwig cross-coupling reactions with yields of up to 91%. The compounds exhibit three different types of photoluminescence, which is well-explained by quantum chemical calculations. Benzodioxinoquinoxaline shows blue fluorescence, with a very short lifetime of 0.64 ns. Its derivatives exhibit either green solid-state-enhanced thermally activated delayed fluorescence (SSE-TADF) or room-temperature phosphorescence (RTP) with lifetimes approaching 7 ms. When molecularly dispersed in a polymeric host, the compounds show a photoluminescence quantum yield close to 60%. The derivatives containing acridine or phenoxazine moieties exhibit bipolar charge transport. At an electric field of 5.8 × 10<sup>5</sup> V/cm, hole and electron mobilities of the phenoxazine-containing compound reach 3.2 × 10<sup>–4</sup> and 1.5 × 10<sup>–4</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, respectively. Among the studied SSE-TADF-based organic light-emitting diodes, the device containing this compound shows the highest external quantum efficiency of 12.3% due to the good charge-transporting and SSE-TADF parameters of the emitter.\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialsau.4c00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高表现出热激活延迟荧光的高度扭曲的供体-受体型化合物的低电荷载流子迁移率,我们设计了一种棒状受体苯并二氧喹喔啉。我们通过微波布赫瓦尔德-哈特维格交叉偶联反应合成了这种受体和两种供体-受体-供体衍生物,产率高达 91%。这些化合物表现出三种不同类型的光致发光,量子化学计算对其进行了很好的解释。苯并二氧代喹喔啉显示出蓝色荧光,寿命极短,仅为 0.64 毫微秒。其衍生物显示绿色固态增强热激活延迟荧光(SSE-TADF)或室温磷光(RTP),寿命接近 7 毫秒。当这些化合物分子分散在聚合物宿主中时,其光致发光量子产率接近 60%。含有吖啶或吩嗪分子的衍生物表现出双极电荷传输。在 5.8 × 105 V/cm 的电场中,含吩嗪化合物的空穴和电子迁移率分别达到 3.2 × 10-4 和 1.5 × 10-4 cm2 V-1 s-1。在所研究的基于 SSE-TADF 的有机发光二极管中,含有这种化合物的器件的外部量子效率最高,达到 12.3%,这是由于发射器具有良好的电荷传输和 SSE-TADF 参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Microwave Irradiation-Assisted Synthesis of Benzodioxinoquinoxaline and Its Donor-Variegated Derivatives Enabling Long-Lived Emission and Efficient Bipolar Charge Carrier Transport

Efficient Microwave Irradiation-Assisted Synthesis of Benzodioxinoquinoxaline and Its Donor-Variegated Derivatives Enabling Long-Lived Emission and Efficient Bipolar Charge Carrier Transport
To enhance the usually low-charge carrier mobilities of highly twisted donor–acceptor-type compounds that exhibit thermally activated delayed fluorescence, we designed a rodlike acceptor benzodioxinoquinoxaline. This acceptor and two donor–acceptor–donor derivatives were synthesized via microwave Buchwald–Hartwig cross-coupling reactions with yields of up to 91%. The compounds exhibit three different types of photoluminescence, which is well-explained by quantum chemical calculations. Benzodioxinoquinoxaline shows blue fluorescence, with a very short lifetime of 0.64 ns. Its derivatives exhibit either green solid-state-enhanced thermally activated delayed fluorescence (SSE-TADF) or room-temperature phosphorescence (RTP) with lifetimes approaching 7 ms. When molecularly dispersed in a polymeric host, the compounds show a photoluminescence quantum yield close to 60%. The derivatives containing acridine or phenoxazine moieties exhibit bipolar charge transport. At an electric field of 5.8 × 105 V/cm, hole and electron mobilities of the phenoxazine-containing compound reach 3.2 × 10–4 and 1.5 × 10–4 cm2 V–1 s–1, respectively. Among the studied SSE-TADF-based organic light-emitting diodes, the device containing this compound shows the highest external quantum efficiency of 12.3% due to the good charge-transporting and SSE-TADF parameters of the emitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信