基于深度回归模型的无人机对抗自适应缺失数据恢复方法

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huan Wang, Xu Zhou, Xiaofeng Liu
{"title":"基于深度回归模型的无人机对抗自适应缺失数据恢复方法","authors":"Huan Wang, Xu Zhou, Xiaofeng Liu","doi":"10.1007/s11063-024-11690-1","DOIUrl":null,"url":null,"abstract":"<p>Completing missions with autonomous decision-making unmanned aerial vehicles (UAV) is a development direction for future battlefields. UAV make decisions based on battlefield situation information collected by sensors and can quickly and accurately perform complex tasks such as path planning, cooperative reconnaissance, cooperative pursuit and attacks. Obtaining real-time situation information of enemy is the basis for realizing autonomous decision-making of the UAV. However, in practice, due to internal sensor failure or interference of enemy, the acquired situation information is prone to be missing, which affects the training and decision-making of autonomous UAV. In this paper, an adaptive missing situation data restoration method for UAV confrontation is proposed. The UAV confrontation situation data are acquired through JSBSim, an open-source UAV simulation platform. By fusing temporal convolutional network and long short-term memory sequences, we establish a deep regression method for missing data restoration and introduce an adaptive mechanism to reduce the training time of the restoration model in response to dynamic changes in the enemy’s strategy during UAV confrontation. In addition, we evaluate the reliability of the proposed method by comparing with different baseline models under different degrees of data missing conditions. The performance of our method is quantified by five metrics. The performance of our proposed method is better than the other benchmark algorithms. The experimental results show that the proposed method can solve the missing data restoration problem and provide reliable situation data while effectively reducing the training time of the restoration model.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"28 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Missing Data Restoration Method for UAV Confrontation Based on Deep Regression Model\",\"authors\":\"Huan Wang, Xu Zhou, Xiaofeng Liu\",\"doi\":\"10.1007/s11063-024-11690-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Completing missions with autonomous decision-making unmanned aerial vehicles (UAV) is a development direction for future battlefields. UAV make decisions based on battlefield situation information collected by sensors and can quickly and accurately perform complex tasks such as path planning, cooperative reconnaissance, cooperative pursuit and attacks. Obtaining real-time situation information of enemy is the basis for realizing autonomous decision-making of the UAV. However, in practice, due to internal sensor failure or interference of enemy, the acquired situation information is prone to be missing, which affects the training and decision-making of autonomous UAV. In this paper, an adaptive missing situation data restoration method for UAV confrontation is proposed. The UAV confrontation situation data are acquired through JSBSim, an open-source UAV simulation platform. By fusing temporal convolutional network and long short-term memory sequences, we establish a deep regression method for missing data restoration and introduce an adaptive mechanism to reduce the training time of the restoration model in response to dynamic changes in the enemy’s strategy during UAV confrontation. In addition, we evaluate the reliability of the proposed method by comparing with different baseline models under different degrees of data missing conditions. The performance of our method is quantified by five metrics. The performance of our proposed method is better than the other benchmark algorithms. The experimental results show that the proposed method can solve the missing data restoration problem and provide reliable situation data while effectively reducing the training time of the restoration model.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11690-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11690-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

利用自主决策无人飞行器(UAV)完成任务是未来战场的一个发展方向。无人机根据传感器采集的战场态势信息进行决策,可以快速准确地完成路径规划、协同侦察、协同追击和攻击等复杂任务。实时获取敌情信息是实现无人机自主决策的基础。但在实际应用中,由于内部传感器故障或敌方干扰等原因,获取的态势信息容易缺失,影响自主无人机的训练和决策。本文提出了一种无人机对抗自适应缺失态势数据恢复方法。无人机对抗态势数据通过开源无人机仿真平台 JSBSim 获取。通过融合时序卷积网络和长短时记忆序列,我们建立了一种用于缺失数据恢复的深度回归方法,并引入了一种自适应机制来减少恢复模型的训练时间,以应对无人机对抗过程中敌方策略的动态变化。此外,我们还通过与不同基线模型在不同数据缺失程度条件下的比较,评估了所提方法的可靠性。我们通过五个指标来量化我们方法的性能。我们提出的方法的性能优于其他基准算法。实验结果表明,我们提出的方法可以解决缺失数据修复问题,并提供可靠的情况数据,同时有效减少了修复模型的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Adaptive Missing Data Restoration Method for UAV Confrontation Based on Deep Regression Model

An Adaptive Missing Data Restoration Method for UAV Confrontation Based on Deep Regression Model

Completing missions with autonomous decision-making unmanned aerial vehicles (UAV) is a development direction for future battlefields. UAV make decisions based on battlefield situation information collected by sensors and can quickly and accurately perform complex tasks such as path planning, cooperative reconnaissance, cooperative pursuit and attacks. Obtaining real-time situation information of enemy is the basis for realizing autonomous decision-making of the UAV. However, in practice, due to internal sensor failure or interference of enemy, the acquired situation information is prone to be missing, which affects the training and decision-making of autonomous UAV. In this paper, an adaptive missing situation data restoration method for UAV confrontation is proposed. The UAV confrontation situation data are acquired through JSBSim, an open-source UAV simulation platform. By fusing temporal convolutional network and long short-term memory sequences, we establish a deep regression method for missing data restoration and introduce an adaptive mechanism to reduce the training time of the restoration model in response to dynamic changes in the enemy’s strategy during UAV confrontation. In addition, we evaluate the reliability of the proposed method by comparing with different baseline models under different degrees of data missing conditions. The performance of our method is quantified by five metrics. The performance of our proposed method is better than the other benchmark algorithms. The experimental results show that the proposed method can solve the missing data restoration problem and provide reliable situation data while effectively reducing the training time of the restoration model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信