{"title":"基于神经网络的流体模拟泊松求解器","authors":"Zichao Jiang, Zhuolin Wang, Qinghe Yao, Gengchao Yang, Yi Zhang, Junyang Jiang","doi":"10.1007/s11063-024-11620-1","DOIUrl":null,"url":null,"abstract":"<p>The pressure Poisson equation is usually the most time-consuming problem in fluid simulation. To accelerate its solving process, we propose a deep neural network-based numerical method, termed Deep Residual Iteration Method (DRIM), in this paper. Firstly, the global equation is decomposed into multiple independent tridiagonal sub-equations, and DRIM is capable of solving all the sub-equations simultaneously. Moreover, we employed Residual Network and a correction iteration method to improve the precision of the solution achieved by the neural network in DRIM. The numerical results, including the Poiseuille flow, the backwards-facing step flow, and driven cavity flow, have proven that the numerical precision of DRIM is comparable to that of classic solvers. In these numerical cases, the DRIM-based algorithm is about 2–10 times faster than the conventional method, which indicates that DRIM has promising applications in large-scale problems.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"265 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Network-Based Poisson Solver for Fluid Simulation\",\"authors\":\"Zichao Jiang, Zhuolin Wang, Qinghe Yao, Gengchao Yang, Yi Zhang, Junyang Jiang\",\"doi\":\"10.1007/s11063-024-11620-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pressure Poisson equation is usually the most time-consuming problem in fluid simulation. To accelerate its solving process, we propose a deep neural network-based numerical method, termed Deep Residual Iteration Method (DRIM), in this paper. Firstly, the global equation is decomposed into multiple independent tridiagonal sub-equations, and DRIM is capable of solving all the sub-equations simultaneously. Moreover, we employed Residual Network and a correction iteration method to improve the precision of the solution achieved by the neural network in DRIM. The numerical results, including the Poiseuille flow, the backwards-facing step flow, and driven cavity flow, have proven that the numerical precision of DRIM is comparable to that of classic solvers. In these numerical cases, the DRIM-based algorithm is about 2–10 times faster than the conventional method, which indicates that DRIM has promising applications in large-scale problems.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"265 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11620-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11620-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Neural Network-Based Poisson Solver for Fluid Simulation
The pressure Poisson equation is usually the most time-consuming problem in fluid simulation. To accelerate its solving process, we propose a deep neural network-based numerical method, termed Deep Residual Iteration Method (DRIM), in this paper. Firstly, the global equation is decomposed into multiple independent tridiagonal sub-equations, and DRIM is capable of solving all the sub-equations simultaneously. Moreover, we employed Residual Network and a correction iteration method to improve the precision of the solution achieved by the neural network in DRIM. The numerical results, including the Poiseuille flow, the backwards-facing step flow, and driven cavity flow, have proven that the numerical precision of DRIM is comparable to that of classic solvers. In these numerical cases, the DRIM-based algorithm is about 2–10 times faster than the conventional method, which indicates that DRIM has promising applications in large-scale problems.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters