用于北极海冰提取的类迁移学习神经动力学算法

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bo Peng, Kefan Zhang, Long Jin, Mingsheng Shang
{"title":"用于北极海冰提取的类迁移学习神经动力学算法","authors":"Bo Peng, Kefan Zhang, Long Jin, Mingsheng Shang","doi":"10.1007/s11063-024-11664-3","DOIUrl":null,"url":null,"abstract":"<p>Sea ice plays a pivotal role in ocean-related research, necessitating the development of highly accurate and robust techniques for its extraction from diverse satellite remote sensing imagery. However, conventional learning methods face limitations due to the soaring cost and time associated with manually collecting sufficient sea ice data for model training. This paper introduces an innovative approach where Neural Dynamics (ND) algorithms are seamlessly integrated with a recurrent neural network, resulting in a Transfer-Learning-Like Neural Dynamics (TLLND) algorithm specifically tailored for sea ice extraction. Firstly, given the susceptibility of the image extraction process to noise in practical scenarios, an ND algorithm with noise tolerance and high extraction accuracy is proposed to address this challenge. Secondly, The internal coefficients of the ND algorithm are determined using a parametric method. Subsequently, the ND algorithm is formulated as a decoupled dynamical system. This enables the coefficients trained on a linear equation problem dataset to be directly generalized to solve the sea ice extraction challenges. Theoretical analysis ensures that the effectiveness of the proposed TLLND algorithm remains unaffected by the specific characteristics of various dataset. To validate its efficacy, robustness, and generalization performance, several comparative experiments are conducted using diverse Arctic sea ice satellite imagery with varying levels of noise. The outcomes of these experiments affirm the competence of the proposed TLLND algorithm in addressing the complexities associated with sea ice extraction.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transfer-Learning-Like Neural Dynamics Algorithm for Arctic Sea Ice Extraction\",\"authors\":\"Bo Peng, Kefan Zhang, Long Jin, Mingsheng Shang\",\"doi\":\"10.1007/s11063-024-11664-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sea ice plays a pivotal role in ocean-related research, necessitating the development of highly accurate and robust techniques for its extraction from diverse satellite remote sensing imagery. However, conventional learning methods face limitations due to the soaring cost and time associated with manually collecting sufficient sea ice data for model training. This paper introduces an innovative approach where Neural Dynamics (ND) algorithms are seamlessly integrated with a recurrent neural network, resulting in a Transfer-Learning-Like Neural Dynamics (TLLND) algorithm specifically tailored for sea ice extraction. Firstly, given the susceptibility of the image extraction process to noise in practical scenarios, an ND algorithm with noise tolerance and high extraction accuracy is proposed to address this challenge. Secondly, The internal coefficients of the ND algorithm are determined using a parametric method. Subsequently, the ND algorithm is formulated as a decoupled dynamical system. This enables the coefficients trained on a linear equation problem dataset to be directly generalized to solve the sea ice extraction challenges. Theoretical analysis ensures that the effectiveness of the proposed TLLND algorithm remains unaffected by the specific characteristics of various dataset. To validate its efficacy, robustness, and generalization performance, several comparative experiments are conducted using diverse Arctic sea ice satellite imagery with varying levels of noise. The outcomes of these experiments affirm the competence of the proposed TLLND algorithm in addressing the complexities associated with sea ice extraction.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11664-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11664-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

海冰在与海洋有关的研究中发挥着举足轻重的作用,因此有必要开发高度精确和稳健的技术,从各种卫星遥感图像中提取海冰。然而,由于人工收集足够的海冰数据进行模型训练所需的成本和时间大幅增加,传统的学习方法面临着局限性。本文介绍了一种创新方法,将神经动力学(ND)算法与递归神经网络无缝集成,形成了专为海冰提取量身定制的类转移学习神经动力学(TLLND)算法。首先,考虑到图像提取过程在实际应用中易受噪声影响,提出了一种具有噪声容限和高提取精度的 ND 算法来应对这一挑战。其次,利用参数法确定 ND 算法的内部系数。随后,ND 算法被表述为一个解耦动态系统。这样,在线性方程问题数据集上训练的系数就可以直接用于解决海冰提取难题。理论分析确保了所提出的 TLLND 算法的有效性不受各种数据集具体特征的影响。为了验证该算法的有效性、鲁棒性和泛化性能,我们使用不同噪声水平的北极海冰卫星图像进行了多项对比实验。这些实验结果肯定了所提出的 TLLND 算法在解决与海冰提取相关的复杂问题方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Transfer-Learning-Like Neural Dynamics Algorithm for Arctic Sea Ice Extraction

A Transfer-Learning-Like Neural Dynamics Algorithm for Arctic Sea Ice Extraction

Sea ice plays a pivotal role in ocean-related research, necessitating the development of highly accurate and robust techniques for its extraction from diverse satellite remote sensing imagery. However, conventional learning methods face limitations due to the soaring cost and time associated with manually collecting sufficient sea ice data for model training. This paper introduces an innovative approach where Neural Dynamics (ND) algorithms are seamlessly integrated with a recurrent neural network, resulting in a Transfer-Learning-Like Neural Dynamics (TLLND) algorithm specifically tailored for sea ice extraction. Firstly, given the susceptibility of the image extraction process to noise in practical scenarios, an ND algorithm with noise tolerance and high extraction accuracy is proposed to address this challenge. Secondly, The internal coefficients of the ND algorithm are determined using a parametric method. Subsequently, the ND algorithm is formulated as a decoupled dynamical system. This enables the coefficients trained on a linear equation problem dataset to be directly generalized to solve the sea ice extraction challenges. Theoretical analysis ensures that the effectiveness of the proposed TLLND algorithm remains unaffected by the specific characteristics of various dataset. To validate its efficacy, robustness, and generalization performance, several comparative experiments are conducted using diverse Arctic sea ice satellite imagery with varying levels of noise. The outcomes of these experiments affirm the competence of the proposed TLLND algorithm in addressing the complexities associated with sea ice extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信