{"title":"利用混合深度学习模型加强多变量时间序列预测","authors":"Amal Mahmoud, Ammar Mohammed","doi":"10.1007/s11063-024-11656-3","DOIUrl":null,"url":null,"abstract":"<p>Time series forecasting is crucial in various domains, ranging from finance and economics to weather prediction and supply chain management. Traditional statistical methods and machine learning models have been widely used for this task. However, they often face limitations in capturing complex temporal dependencies and handling multivariate time series data. In recent years, deep learning models have emerged as a promising solution for overcoming these limitations. This paper investigates how deep learning, specifically hybrid models, can enhance time series forecasting and address the shortcomings of traditional approaches. This dual capability handles intricate variable interdependencies and non-stationarities in multivariate forecasting. Our results show that the hybrid models achieved lower error rates and higher <span>\\(R^2\\)</span> values, signifying their superior predictive performance and generalization capabilities. These architectures effectively extract spatial features and temporal dynamics in multivariate time series by combining convolutional and recurrent modules. This study evaluates deep learning models, specifically hybrid architectures, for multivariate time series forecasting. On two real-world datasets - Traffic Volume and Air Quality - the TCN-BiLSTM model achieved the best overall performance. For Traffic Volume, the TCN-BiLSTM model achieved an <span>\\(R^2\\)</span> score of 0.976, and for Air Quality, it reached an <span>\\(R^2\\)</span> score of 0.94. These results highlight the model’s effectiveness in leveraging the strengths of Temporal Convolutional Networks (TCNs) for capturing multi-scale temporal patterns and Bidirectional Long Short-Term Memory (BiLSTMs) for retaining contextual information, thereby enhancing the accuracy of time series forecasting.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"49 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Hybrid Deep Learning Models for Enhanced Multivariate Time Series Forecasting\",\"authors\":\"Amal Mahmoud, Ammar Mohammed\",\"doi\":\"10.1007/s11063-024-11656-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Time series forecasting is crucial in various domains, ranging from finance and economics to weather prediction and supply chain management. Traditional statistical methods and machine learning models have been widely used for this task. However, they often face limitations in capturing complex temporal dependencies and handling multivariate time series data. In recent years, deep learning models have emerged as a promising solution for overcoming these limitations. This paper investigates how deep learning, specifically hybrid models, can enhance time series forecasting and address the shortcomings of traditional approaches. This dual capability handles intricate variable interdependencies and non-stationarities in multivariate forecasting. Our results show that the hybrid models achieved lower error rates and higher <span>\\\\(R^2\\\\)</span> values, signifying their superior predictive performance and generalization capabilities. These architectures effectively extract spatial features and temporal dynamics in multivariate time series by combining convolutional and recurrent modules. This study evaluates deep learning models, specifically hybrid architectures, for multivariate time series forecasting. On two real-world datasets - Traffic Volume and Air Quality - the TCN-BiLSTM model achieved the best overall performance. For Traffic Volume, the TCN-BiLSTM model achieved an <span>\\\\(R^2\\\\)</span> score of 0.976, and for Air Quality, it reached an <span>\\\\(R^2\\\\)</span> score of 0.94. These results highlight the model’s effectiveness in leveraging the strengths of Temporal Convolutional Networks (TCNs) for capturing multi-scale temporal patterns and Bidirectional Long Short-Term Memory (BiLSTMs) for retaining contextual information, thereby enhancing the accuracy of time series forecasting.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11656-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11656-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Leveraging Hybrid Deep Learning Models for Enhanced Multivariate Time Series Forecasting
Time series forecasting is crucial in various domains, ranging from finance and economics to weather prediction and supply chain management. Traditional statistical methods and machine learning models have been widely used for this task. However, they often face limitations in capturing complex temporal dependencies and handling multivariate time series data. In recent years, deep learning models have emerged as a promising solution for overcoming these limitations. This paper investigates how deep learning, specifically hybrid models, can enhance time series forecasting and address the shortcomings of traditional approaches. This dual capability handles intricate variable interdependencies and non-stationarities in multivariate forecasting. Our results show that the hybrid models achieved lower error rates and higher \(R^2\) values, signifying their superior predictive performance and generalization capabilities. These architectures effectively extract spatial features and temporal dynamics in multivariate time series by combining convolutional and recurrent modules. This study evaluates deep learning models, specifically hybrid architectures, for multivariate time series forecasting. On two real-world datasets - Traffic Volume and Air Quality - the TCN-BiLSTM model achieved the best overall performance. For Traffic Volume, the TCN-BiLSTM model achieved an \(R^2\) score of 0.976, and for Air Quality, it reached an \(R^2\) score of 0.94. These results highlight the model’s effectiveness in leveraging the strengths of Temporal Convolutional Networks (TCNs) for capturing multi-scale temporal patterns and Bidirectional Long Short-Term Memory (BiLSTMs) for retaining contextual information, thereby enhancing the accuracy of time series forecasting.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters