{"title":"轻松制备可直接用作锂离子储能电极的 Hf3N4 薄膜","authors":"Zhengguang Shi, Geng Yu, Jing Li, Zhenggang Jia, Xuexi Zhang, Cheng-Te Lin, Qianru Lin, Zhaoyu Chen and Hsu-Sheng Tsai","doi":"10.1039/D4NH00406J","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal nitride thin-film electrodes are potential electrode materials for all-solid-state thin-film lithium-ion batteries. In this study, orthorhombic Hf<small><sub>3</sub></small>N<small><sub>4</sub></small> thin-film electrodes applied in lithium-ion batteries were fabricated by the magnetron sputtering deposition of Hf followed by N<small><sub>2</sub></small> plasma immersion and post-annealing for the first time. This electrode material without additives such as binders and conductive agents exhibited a high specific capacity, high cycling stability, and excellent rate performance. At a current density of 0.1 A g<small><sup>−1</sup></small>, the initial discharge capacity was 583.2 mA h g<small><sup>−1</sup></small> and the stable Coulombic efficiency was 96.6%. At a high current density of 2 A g<small><sup>−1</sup></small>, the Hf<small><sub>3</sub></small>N<small><sub>4</sub></small> thin-film electrodes could still provide a stable discharge capacity of about 260 mA h g<small><sup>−1</sup></small> and Coulombic efficiency close to 100%. By analyzing the cyclic voltammetry curves at different scan rates, it was found that the Li<small><sup>+</sup></small> storage in Hf<small><sub>3</sub></small>N<small><sub>4</sub></small> thin-film electrodes was mainly contributed by a pseudo-capacitance mechanism.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 11","pages":" 2031-2041"},"PeriodicalIF":8.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile preparation of Hf3N4 thin films directly used as electrodes for lithium-ion storage†\",\"authors\":\"Zhengguang Shi, Geng Yu, Jing Li, Zhenggang Jia, Xuexi Zhang, Cheng-Te Lin, Qianru Lin, Zhaoyu Chen and Hsu-Sheng Tsai\",\"doi\":\"10.1039/D4NH00406J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition-metal nitride thin-film electrodes are potential electrode materials for all-solid-state thin-film lithium-ion batteries. In this study, orthorhombic Hf<small><sub>3</sub></small>N<small><sub>4</sub></small> thin-film electrodes applied in lithium-ion batteries were fabricated by the magnetron sputtering deposition of Hf followed by N<small><sub>2</sub></small> plasma immersion and post-annealing for the first time. This electrode material without additives such as binders and conductive agents exhibited a high specific capacity, high cycling stability, and excellent rate performance. At a current density of 0.1 A g<small><sup>−1</sup></small>, the initial discharge capacity was 583.2 mA h g<small><sup>−1</sup></small> and the stable Coulombic efficiency was 96.6%. At a high current density of 2 A g<small><sup>−1</sup></small>, the Hf<small><sub>3</sub></small>N<small><sub>4</sub></small> thin-film electrodes could still provide a stable discharge capacity of about 260 mA h g<small><sup>−1</sup></small> and Coulombic efficiency close to 100%. By analyzing the cyclic voltammetry curves at different scan rates, it was found that the Li<small><sup>+</sup></small> storage in Hf<small><sub>3</sub></small>N<small><sub>4</sub></small> thin-film electrodes was mainly contributed by a pseudo-capacitance mechanism.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 11\",\"pages\":\" 2031-2041\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00406j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00406j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
过渡金属氮化物薄膜电极是全固态薄膜锂离子电池的潜在电极材料。本研究首次通过磁控溅射沉积 Hf,然后进行 N2 等离子体浸泡和后退火,制备了应用于锂离子电池的正交 Hf3N4 薄膜电极。这种不含粘合剂和导电剂等添加剂的电极材料具有高比容量、高循环稳定性和优异的速率性能。在 0.1 A g-1 的电流密度下,初始放电容量为 583.2 mA h g-1,稳定的库仑效率为 96.6%。在 2 A g-1 的高电流密度下,Hf3N4 薄膜电极仍能提供约 260 mA h g-1 的稳定放电容量,库仑效率接近 100%。通过分析不同扫描速率下的循环伏安曲线,发现 Hf3N4 薄膜电极中的 Li+ 储能主要是由伪电容机制促成的。
Facile preparation of Hf3N4 thin films directly used as electrodes for lithium-ion storage†
Transition-metal nitride thin-film electrodes are potential electrode materials for all-solid-state thin-film lithium-ion batteries. In this study, orthorhombic Hf3N4 thin-film electrodes applied in lithium-ion batteries were fabricated by the magnetron sputtering deposition of Hf followed by N2 plasma immersion and post-annealing for the first time. This electrode material without additives such as binders and conductive agents exhibited a high specific capacity, high cycling stability, and excellent rate performance. At a current density of 0.1 A g−1, the initial discharge capacity was 583.2 mA h g−1 and the stable Coulombic efficiency was 96.6%. At a high current density of 2 A g−1, the Hf3N4 thin-film electrodes could still provide a stable discharge capacity of about 260 mA h g−1 and Coulombic efficiency close to 100%. By analyzing the cyclic voltammetry curves at different scan rates, it was found that the Li+ storage in Hf3N4 thin-film electrodes was mainly contributed by a pseudo-capacitance mechanism.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.