酒石酸 3-羧基丙铵单晶的生长、表征、光谱检测和光学特性计算分析

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
C. Usha, Ali Raza Ayub, Anthoniammal Panneerselvam, M. Sumithra Devi, R. Jayashree, Tahani Mazyad Almutairi, Gautham Devendrapandi, Ranjith Balu
{"title":"酒石酸 3-羧基丙铵单晶的生长、表征、光谱检测和光学特性计算分析","authors":"C. Usha, Ali Raza Ayub, Anthoniammal Panneerselvam, M. Sumithra Devi, R. Jayashree, Tahani Mazyad Almutairi, Gautham Devendrapandi, Ranjith Balu","doi":"10.1007/s10854-024-13444-0","DOIUrl":null,"url":null,"abstract":"<p>A slow evaporation solution growth approach was used for synthesizing 3-carboxypropanaminium DL-tartrate (3CPT). Powder X-ray diffraction verified the crystallinity of the material. The crystal’s optical characteristics and transmittance are revealed by the UV–Visible spectroscopic analysis. The crystal’s thermal equilibrium has been investigated using TGA/DTA testing. To study the crystal’s carbon and hydrogen environment, the FT NMR spectra were used. The present compound was investigated using both experimental and theoretical quantum calculations (optimized structure and IR) with the use of DFT theory at the B3LYP functional and 6–311 + + G(d, p) basis set. Molecular orbitals for the HOMO and LUMO states show that the molecule experienced a significant change in charge. The molecule is subjected to ELF and LOL for topological research. The 3CPT has NLO characteristics, according to the hyperpolarizability calculations.</p>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth, characterization, spectroscopic examination and computational analysis of optical properties of 3-Carboxypropanaminium DL-tartrate single crystal\",\"authors\":\"C. Usha, Ali Raza Ayub, Anthoniammal Panneerselvam, M. Sumithra Devi, R. Jayashree, Tahani Mazyad Almutairi, Gautham Devendrapandi, Ranjith Balu\",\"doi\":\"10.1007/s10854-024-13444-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A slow evaporation solution growth approach was used for synthesizing 3-carboxypropanaminium DL-tartrate (3CPT). Powder X-ray diffraction verified the crystallinity of the material. The crystal’s optical characteristics and transmittance are revealed by the UV–Visible spectroscopic analysis. The crystal’s thermal equilibrium has been investigated using TGA/DTA testing. To study the crystal’s carbon and hydrogen environment, the FT NMR spectra were used. The present compound was investigated using both experimental and theoretical quantum calculations (optimized structure and IR) with the use of DFT theory at the B3LYP functional and 6–311 + + G(d, p) basis set. Molecular orbitals for the HOMO and LUMO states show that the molecule experienced a significant change in charge. The molecule is subjected to ELF and LOL for topological research. The 3CPT has NLO characteristics, according to the hyperpolarizability calculations.</p>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10854-024-13444-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10854-024-13444-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用缓慢蒸发溶液生长法合成了酒石酸 3-羧基丙铵(3-carboxypropanaminium DL-tartrate,3CPT)。粉末 X 射线衍射验证了该材料的结晶性。紫外-可见光谱分析揭示了晶体的光学特性和透射率。利用 TGA/DTA 测试研究了晶体的热平衡。为了研究晶体的碳和氢环境,使用了傅立叶变换核磁共振光谱。利用 B3LYP 功能和 6-311 + + G(d, p) 基集的 DFT 理论,通过实验和理论量子计算(优化结构和红外)对本化合物进行了研究。HOMO 和 LUMO 状态的分子轨道表明,该分子的电荷发生了显著变化。对该分子进行了 ELF 和 LOL 拓扑研究。根据超极化率计算,3CPT 具有 NLO 特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Growth, characterization, spectroscopic examination and computational analysis of optical properties of 3-Carboxypropanaminium DL-tartrate single crystal

Growth, characterization, spectroscopic examination and computational analysis of optical properties of 3-Carboxypropanaminium DL-tartrate single crystal

A slow evaporation solution growth approach was used for synthesizing 3-carboxypropanaminium DL-tartrate (3CPT). Powder X-ray diffraction verified the crystallinity of the material. The crystal’s optical characteristics and transmittance are revealed by the UV–Visible spectroscopic analysis. The crystal’s thermal equilibrium has been investigated using TGA/DTA testing. To study the crystal’s carbon and hydrogen environment, the FT NMR spectra were used. The present compound was investigated using both experimental and theoretical quantum calculations (optimized structure and IR) with the use of DFT theory at the B3LYP functional and 6–311 + + G(d, p) basis set. Molecular orbitals for the HOMO and LUMO states show that the molecule experienced a significant change in charge. The molecule is subjected to ELF and LOL for topological research. The 3CPT has NLO characteristics, according to the hyperpolarizability calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信