Wenjian Li, Fubin Luo, Yumei Dai, Delong Chen, Hongzhou Li
{"title":"通过共价键和逐层组装方法制造高效阻燃和生物相容性苎麻织物","authors":"Wenjian Li, Fubin Luo, Yumei Dai, Delong Chen, Hongzhou Li","doi":"10.1007/s10570-024-06147-6","DOIUrl":null,"url":null,"abstract":"<div><p>Ramie fibers have poor flame-retardant properties, which limits their application. To improve the flame-retardant properties of ramie fabric (RF), a durable flame-retardant coating was successfully realized on RF by combining covalent bonding and electrostatic adsorption. Si/P/N flame-retardant coatings were constructed on RF using cationic polyethyleneimine (PEI) and anionic sodium hexametaphosphate (PSP) via the layer-by-layer (LBL) assembly approach with the introduction of 3-glycidoxypropyltrimethoxysilane (GPTMS) as an organic cross-linker. Compared with the untreated RF samples, the fabrics treated with the flame-retardant coating PEI/PSP via the LBL method presented reductions of 51.06%, 48.30%, and 40.05% in the fire growth rate, peak heat release rate, and total heat release, respectively, in the cone calorimeter test. In addition, at a weight gain of 31.57%, the fabric self-extinguished in the UL-94 test within 10 s after leaving the ignition source, resulting in a damaged length of 6.13 cm. G-3 retained the limiting oxygen index (LOI) of 26.40% after 6 laundering cycles (LCs). The TG results revealed that the char residue of G-3 at 800 °C reached 30.34 wt%. The surface of the flame-retardant coating of GPTMS-PEI/PSP had good char formation. This study provides a feasible method for realizing durable flame-retardant RFs.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 14","pages":"9025 - 9042"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of highly efficient flame-retardant and biocompatible ramie fabrics through covalent bonding and layer-by-layer assembly methods\",\"authors\":\"Wenjian Li, Fubin Luo, Yumei Dai, Delong Chen, Hongzhou Li\",\"doi\":\"10.1007/s10570-024-06147-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ramie fibers have poor flame-retardant properties, which limits their application. To improve the flame-retardant properties of ramie fabric (RF), a durable flame-retardant coating was successfully realized on RF by combining covalent bonding and electrostatic adsorption. Si/P/N flame-retardant coatings were constructed on RF using cationic polyethyleneimine (PEI) and anionic sodium hexametaphosphate (PSP) via the layer-by-layer (LBL) assembly approach with the introduction of 3-glycidoxypropyltrimethoxysilane (GPTMS) as an organic cross-linker. Compared with the untreated RF samples, the fabrics treated with the flame-retardant coating PEI/PSP via the LBL method presented reductions of 51.06%, 48.30%, and 40.05% in the fire growth rate, peak heat release rate, and total heat release, respectively, in the cone calorimeter test. In addition, at a weight gain of 31.57%, the fabric self-extinguished in the UL-94 test within 10 s after leaving the ignition source, resulting in a damaged length of 6.13 cm. G-3 retained the limiting oxygen index (LOI) of 26.40% after 6 laundering cycles (LCs). The TG results revealed that the char residue of G-3 at 800 °C reached 30.34 wt%. The surface of the flame-retardant coating of GPTMS-PEI/PSP had good char formation. This study provides a feasible method for realizing durable flame-retardant RFs.</p></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"31 14\",\"pages\":\"9025 - 9042\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-024-06147-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06147-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Fabrication of highly efficient flame-retardant and biocompatible ramie fabrics through covalent bonding and layer-by-layer assembly methods
Ramie fibers have poor flame-retardant properties, which limits their application. To improve the flame-retardant properties of ramie fabric (RF), a durable flame-retardant coating was successfully realized on RF by combining covalent bonding and electrostatic adsorption. Si/P/N flame-retardant coatings were constructed on RF using cationic polyethyleneimine (PEI) and anionic sodium hexametaphosphate (PSP) via the layer-by-layer (LBL) assembly approach with the introduction of 3-glycidoxypropyltrimethoxysilane (GPTMS) as an organic cross-linker. Compared with the untreated RF samples, the fabrics treated with the flame-retardant coating PEI/PSP via the LBL method presented reductions of 51.06%, 48.30%, and 40.05% in the fire growth rate, peak heat release rate, and total heat release, respectively, in the cone calorimeter test. In addition, at a weight gain of 31.57%, the fabric self-extinguished in the UL-94 test within 10 s after leaving the ignition source, resulting in a damaged length of 6.13 cm. G-3 retained the limiting oxygen index (LOI) of 26.40% after 6 laundering cycles (LCs). The TG results revealed that the char residue of G-3 at 800 °C reached 30.34 wt%. The surface of the flame-retardant coating of GPTMS-PEI/PSP had good char formation. This study provides a feasible method for realizing durable flame-retardant RFs.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.