{"title":"重构均值场博弈模型中与状态无关的成本函数","authors":"Kui Ren, Nathan Soedjak, Kewei Wang, Hongyu Zhai","doi":"10.1088/1361-6420/ad7497","DOIUrl":null,"url":null,"abstract":"In this short note, we consider an inverse problem to a mean-field games (MFGs) system where we are interested in reconstructing the state-independent running cost function from observed value-function data. We provide an elementary proof of a uniqueness result for the inverse problem using the standard multilinearization technique. One of the main features of our work is that we insist that the population distribution be a probability measure, a requirement that is not enforced in some of the existing literature on theoretical inverse MFGs.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"258 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing a state-independent cost function in a mean-field game model\",\"authors\":\"Kui Ren, Nathan Soedjak, Kewei Wang, Hongyu Zhai\",\"doi\":\"10.1088/1361-6420/ad7497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, we consider an inverse problem to a mean-field games (MFGs) system where we are interested in reconstructing the state-independent running cost function from observed value-function data. We provide an elementary proof of a uniqueness result for the inverse problem using the standard multilinearization technique. One of the main features of our work is that we insist that the population distribution be a probability measure, a requirement that is not enforced in some of the existing literature on theoretical inverse MFGs.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"258 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad7497\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad7497","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reconstructing a state-independent cost function in a mean-field game model
In this short note, we consider an inverse problem to a mean-field games (MFGs) system where we are interested in reconstructing the state-independent running cost function from observed value-function data. We provide an elementary proof of a uniqueness result for the inverse problem using the standard multilinearization technique. One of the main features of our work is that we insist that the population distribution be a probability measure, a requirement that is not enforced in some of the existing literature on theoretical inverse MFGs.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.