逆均值场博弈的双层优化方法 *

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jiajia Yu, Quan Xiao, Tianyi Chen and Rongjie Lai
{"title":"逆均值场博弈的双层优化方法 *","authors":"Jiajia Yu, Quan Xiao, Tianyi Chen and Rongjie Lai","doi":"10.1088/1361-6420/ad75b0","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a bilevel optimization framework for addressing inverse mean-field games, alongside an exploration of numerical methods tailored for this bilevel problem. The primary benefit of our bilevel formulation lies in maintaining the convexity of the objective function and the linearity of constraints in the forward problem. Our paper focuses on inverse mean-field games characterized by unknown obstacles and metrics. We show numerical stability for these two types of inverse problems. More importantly, we, for the first time, establish the identifiability of the inverse mean-field game with unknown obstacles via the solution of the resultant bilevel problem. The bilevel approach enables us to employ an alternating gradient-based optimization algorithm with a provable convergence guarantee. To validate the effectiveness of our methods in solving the inverse problems, we have designed comprehensive numerical experiments, providing empirical evidence of its efficacy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bilevel optimization method for inverse mean-field games *\",\"authors\":\"Jiajia Yu, Quan Xiao, Tianyi Chen and Rongjie Lai\",\"doi\":\"10.1088/1361-6420/ad75b0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a bilevel optimization framework for addressing inverse mean-field games, alongside an exploration of numerical methods tailored for this bilevel problem. The primary benefit of our bilevel formulation lies in maintaining the convexity of the objective function and the linearity of constraints in the forward problem. Our paper focuses on inverse mean-field games characterized by unknown obstacles and metrics. We show numerical stability for these two types of inverse problems. More importantly, we, for the first time, establish the identifiability of the inverse mean-field game with unknown obstacles via the solution of the resultant bilevel problem. The bilevel approach enables us to employ an alternating gradient-based optimization algorithm with a provable convergence guarantee. To validate the effectiveness of our methods in solving the inverse problems, we have designed comprehensive numerical experiments, providing empirical evidence of its efficacy.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad75b0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad75b0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种用于解决逆均值场博弈问题的双层优化框架,同时还探讨了为这一双层问题量身定制的数值方法。我们的双层表述的主要优点在于保持了前向问题中目标函数的凸性和约束条件的线性。我们的论文侧重于以未知障碍和度量为特征的反均值场博弈。我们展示了这两类逆问题的数值稳定性。更重要的是,我们首次通过求解由此产生的双层问题,建立了具有未知障碍的逆均值场博弈的可识别性。双梯度方法使我们能够采用一种基于梯度交替的优化算法,该算法具有可证明的收敛性保证。为了验证我们的方法在解决逆问题方面的有效性,我们设计了全面的数值实验,为其有效性提供了经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bilevel optimization method for inverse mean-field games *
In this paper, we introduce a bilevel optimization framework for addressing inverse mean-field games, alongside an exploration of numerical methods tailored for this bilevel problem. The primary benefit of our bilevel formulation lies in maintaining the convexity of the objective function and the linearity of constraints in the forward problem. Our paper focuses on inverse mean-field games characterized by unknown obstacles and metrics. We show numerical stability for these two types of inverse problems. More importantly, we, for the first time, establish the identifiability of the inverse mean-field game with unknown obstacles via the solution of the resultant bilevel problem. The bilevel approach enables us to employ an alternating gradient-based optimization algorithm with a provable convergence guarantee. To validate the effectiveness of our methods in solving the inverse problems, we have designed comprehensive numerical experiments, providing empirical evidence of its efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信