Sandeep Eswaran Panchu, Sarojini Jeeva Panchu, Vijayaraj Venkatachalam, Hendrik C. Swart, Moorthy Babu Sridharan, Narayana Kalkura Subbaraya
{"title":"利用工程羟基磷灰石纳米颗粒增强对 Cd2+ 的吸附能力","authors":"Sandeep Eswaran Panchu, Sarojini Jeeva Panchu, Vijayaraj Venkatachalam, Hendrik C. Swart, Moorthy Babu Sridharan, Narayana Kalkura Subbaraya","doi":"10.1007/s10904-024-03259-1","DOIUrl":null,"url":null,"abstract":"<p>The hydroxyapatite (HAp) nanoparticles were effectively engineered through a combination of ultrasonication and microwave techniques. This process significantly enhances the adsorbent’s specific surface area and particle size compared to microwave and other combinational techniques. The particle size of the adsorbent was effectively reduced to 30 ± 3 nm (length) and 10 ± 3 nm (width), with a crystallite size of 10 nm, an enhanced specific surface area of 105 m<sup>2</sup>/g. These modifications led to a significant acceleration in Cd<sup>2+</sup> adsorption capacity, 195 mg/g at pH 7 in 20 min. The pseudo-second-order kinetic and Langmuir isotherm fitting confirm that Cd<sup>2+</sup> adsorption occurs through chemisorption and that the adsorption is monolayer, respectively. The positive value of ΔH and the negative value of ΔG indicate that the adsorption of Cd<sup>2+</sup> ions was endothermic and spontaneous, respectively. Very high and sustained regeneration efficiency was observed for HAp-UM (ultrasound and microwave treated HAp), 95% after seven regeneration cycles. The simple and rapid synthesis of HAp-UM demonstrates a drastic enhancement in Cd<sup>2+</sup> ion removal capacity, making it a promising option for wastewater treatment.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"71 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Cd2+ Adsorption Using Engineered Hydroxyapatite Nanoparticles\",\"authors\":\"Sandeep Eswaran Panchu, Sarojini Jeeva Panchu, Vijayaraj Venkatachalam, Hendrik C. Swart, Moorthy Babu Sridharan, Narayana Kalkura Subbaraya\",\"doi\":\"10.1007/s10904-024-03259-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hydroxyapatite (HAp) nanoparticles were effectively engineered through a combination of ultrasonication and microwave techniques. This process significantly enhances the adsorbent’s specific surface area and particle size compared to microwave and other combinational techniques. The particle size of the adsorbent was effectively reduced to 30 ± 3 nm (length) and 10 ± 3 nm (width), with a crystallite size of 10 nm, an enhanced specific surface area of 105 m<sup>2</sup>/g. These modifications led to a significant acceleration in Cd<sup>2+</sup> adsorption capacity, 195 mg/g at pH 7 in 20 min. The pseudo-second-order kinetic and Langmuir isotherm fitting confirm that Cd<sup>2+</sup> adsorption occurs through chemisorption and that the adsorption is monolayer, respectively. The positive value of ΔH and the negative value of ΔG indicate that the adsorption of Cd<sup>2+</sup> ions was endothermic and spontaneous, respectively. Very high and sustained regeneration efficiency was observed for HAp-UM (ultrasound and microwave treated HAp), 95% after seven regeneration cycles. The simple and rapid synthesis of HAp-UM demonstrates a drastic enhancement in Cd<sup>2+</sup> ion removal capacity, making it a promising option for wastewater treatment.</p>\",\"PeriodicalId\":639,\"journal\":{\"name\":\"Journal of Inorganic and Organometallic Polymers and Materials\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic and Organometallic Polymers and Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10904-024-03259-1\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03259-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhanced Cd2+ Adsorption Using Engineered Hydroxyapatite Nanoparticles
The hydroxyapatite (HAp) nanoparticles were effectively engineered through a combination of ultrasonication and microwave techniques. This process significantly enhances the adsorbent’s specific surface area and particle size compared to microwave and other combinational techniques. The particle size of the adsorbent was effectively reduced to 30 ± 3 nm (length) and 10 ± 3 nm (width), with a crystallite size of 10 nm, an enhanced specific surface area of 105 m2/g. These modifications led to a significant acceleration in Cd2+ adsorption capacity, 195 mg/g at pH 7 in 20 min. The pseudo-second-order kinetic and Langmuir isotherm fitting confirm that Cd2+ adsorption occurs through chemisorption and that the adsorption is monolayer, respectively. The positive value of ΔH and the negative value of ΔG indicate that the adsorption of Cd2+ ions was endothermic and spontaneous, respectively. Very high and sustained regeneration efficiency was observed for HAp-UM (ultrasound and microwave treated HAp), 95% after seven regeneration cycles. The simple and rapid synthesis of HAp-UM demonstrates a drastic enhancement in Cd2+ ion removal capacity, making it a promising option for wastewater treatment.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.