Eda İlhan Başoğlu, Ayşegül Beşir Özgeçen, Nihat Yavuz
{"title":"通过添加米粉提高西葫芦泥的 3D 打印能力","authors":"Eda İlhan Başoğlu, Ayşegül Beşir Özgeçen, Nihat Yavuz","doi":"10.1111/ijfs.17508","DOIUrl":null,"url":null,"abstract":"<p>This study explored the feasibility of 3D food printing with zucchini puree-rice flour mixtures, focussing on factors impacting print quality for home-based applications. The effects of printing variables, including fill ratio (25%, 50%, 75% and 100%) and printing bed temperature (65 °C, 75 °C and 85 °C), were assessed on the print quality of the samples, along with rice flour ratio and a freeze-thaw step commonly employed by general consumers. Increasing rice flour content enhanced water retention, leading to improved printability in terms of shape retention and dimensional accuracy. Higher printing surface temperatures promoted starch gelation in the initial layers, resulting in better shape retention and improved print scores at moderate rice flour ratios. The highest print quality, determined by dimensional accuracy and visual observations, was achieved with a rice flour puree ratio of 5:10, printed at a 100% infill ratio and 85°C printing bed temperature. While freeze-thawing the mixtures preserved printability, it weakened the structure, leading to increased syneresis and spreading. Cooking fresh samples at 170 °C for 20 min after printing caused surface cracks, whereas freeze-thawed samples retained their smooth surface. Further research is needed to optimise printing parameters, considering typical preparation steps that may be applied to vegetable flour mixtures before and after 3D printing.</p>","PeriodicalId":181,"journal":{"name":"International Journal of Food Science & Technology","volume":"59 11","pages":"8181-8190"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijfs.17508","citationCount":"0","resultStr":"{\"title\":\"Enhancement of 3D-printability of zucchini puree by rice flour addition\",\"authors\":\"Eda İlhan Başoğlu, Ayşegül Beşir Özgeçen, Nihat Yavuz\",\"doi\":\"10.1111/ijfs.17508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explored the feasibility of 3D food printing with zucchini puree-rice flour mixtures, focussing on factors impacting print quality for home-based applications. The effects of printing variables, including fill ratio (25%, 50%, 75% and 100%) and printing bed temperature (65 °C, 75 °C and 85 °C), were assessed on the print quality of the samples, along with rice flour ratio and a freeze-thaw step commonly employed by general consumers. Increasing rice flour content enhanced water retention, leading to improved printability in terms of shape retention and dimensional accuracy. Higher printing surface temperatures promoted starch gelation in the initial layers, resulting in better shape retention and improved print scores at moderate rice flour ratios. The highest print quality, determined by dimensional accuracy and visual observations, was achieved with a rice flour puree ratio of 5:10, printed at a 100% infill ratio and 85°C printing bed temperature. While freeze-thawing the mixtures preserved printability, it weakened the structure, leading to increased syneresis and spreading. Cooking fresh samples at 170 °C for 20 min after printing caused surface cracks, whereas freeze-thawed samples retained their smooth surface. Further research is needed to optimise printing parameters, considering typical preparation steps that may be applied to vegetable flour mixtures before and after 3D printing.</p>\",\"PeriodicalId\":181,\"journal\":{\"name\":\"International Journal of Food Science & Technology\",\"volume\":\"59 11\",\"pages\":\"8181-8190\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijfs.17508\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Science & Technology\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijfs.17508\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Science & Technology","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijfs.17508","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要本研究探讨了用西葫芦泥-米粉混合物进行三维食品打印的可行性,重点是影响家庭应用打印质量的因素。研究评估了打印变量对样品打印质量的影响,包括填充率(25%、50%、75% 和 100%)和打印床温度(65 °C、75 °C 和 85 °C),以及米粉比例和一般消费者常用的冻融步骤。米粉含量的增加提高了保水性,从而在形状保持和尺寸精度方面改善了可印刷性。较高的印刷表面温度可促进初始层的淀粉凝胶化,从而在中等米粉比例下获得更好的形状保持性和更高的印刷分数。根据尺寸精度和肉眼观察,米粉浆比例为 5:10、100% 填充率和 85°C 印刷床温度下的印刷质量最高。虽然冻融混合物可以保持印刷适性,但会削弱结构,导致粘结和铺展增加。在印刷后,将新鲜样品在 170 °C 下煮沸 20 分钟会导致表面裂纹,而冻融样品则能保持表面光滑。考虑到三维打印前后可能对蔬菜粉混合物采用的典型制备步骤,还需要进一步的研究来优化打印参数。
Enhancement of 3D-printability of zucchini puree by rice flour addition
This study explored the feasibility of 3D food printing with zucchini puree-rice flour mixtures, focussing on factors impacting print quality for home-based applications. The effects of printing variables, including fill ratio (25%, 50%, 75% and 100%) and printing bed temperature (65 °C, 75 °C and 85 °C), were assessed on the print quality of the samples, along with rice flour ratio and a freeze-thaw step commonly employed by general consumers. Increasing rice flour content enhanced water retention, leading to improved printability in terms of shape retention and dimensional accuracy. Higher printing surface temperatures promoted starch gelation in the initial layers, resulting in better shape retention and improved print scores at moderate rice flour ratios. The highest print quality, determined by dimensional accuracy and visual observations, was achieved with a rice flour puree ratio of 5:10, printed at a 100% infill ratio and 85°C printing bed temperature. While freeze-thawing the mixtures preserved printability, it weakened the structure, leading to increased syneresis and spreading. Cooking fresh samples at 170 °C for 20 min after printing caused surface cracks, whereas freeze-thawed samples retained their smooth surface. Further research is needed to optimise printing parameters, considering typical preparation steps that may be applied to vegetable flour mixtures before and after 3D printing.
期刊介绍:
The International Journal of Food Science & Technology (IJFST) is published for the Institute of Food Science and Technology, the IFST. This authoritative and well-established journal publishes in a wide range of subjects, ranging from pure research in the various sciences associated with food to practical experiments designed to improve technical processes. Subjects covered range from raw material composition to consumer acceptance, from physical properties to food engineering practices, and from quality assurance and safety to storage, distribution, marketing and use. While the main aim of the Journal is to provide a forum for papers describing the results of original research, review articles are also welcomed.