不同地震网络的力矩张量反演可靠性

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Anna Tymińska, Grzegorz Lizurek
{"title":"不同地震网络的力矩张量反演可靠性","authors":"Anna Tymińska,&nbsp;Grzegorz Lizurek","doi":"10.1007/s00024-024-03570-5","DOIUrl":null,"url":null,"abstract":"<div><p>The article investigates the reliability of moment tensor (MT) inversion in time domain with use of first P-wave amplitude, a method used to determine the source mechanisms of earthquakes, across four different seismic networks. The study compares the synthetic tests results of MT inversion for two underground mining and two artificial reservoir monitoring seismic networks. The analysis was performed to assesses how consistency and accuracy of the results depend on different factors like: network configuration, events depth, velocity model, focal mechanism of event and applied noise. The findings highlight the impact of network configuration compared to other variables and data quality on the reliability of moment tensor inversion and provide insights into different factors which have to be considered to enhance MT accuracy. The significance of events depth in P-wave amplitude MT inversion and the necessity to consider velocity model influence, especially presence of high velocity gradient, is highlighted by the presented results.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2787 - 2800"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-024-03570-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Reliability of Moment Tensor Inversion for Different Seismic Networks\",\"authors\":\"Anna Tymińska,&nbsp;Grzegorz Lizurek\",\"doi\":\"10.1007/s00024-024-03570-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article investigates the reliability of moment tensor (MT) inversion in time domain with use of first P-wave amplitude, a method used to determine the source mechanisms of earthquakes, across four different seismic networks. The study compares the synthetic tests results of MT inversion for two underground mining and two artificial reservoir monitoring seismic networks. The analysis was performed to assesses how consistency and accuracy of the results depend on different factors like: network configuration, events depth, velocity model, focal mechanism of event and applied noise. The findings highlight the impact of network configuration compared to other variables and data quality on the reliability of moment tensor inversion and provide insights into different factors which have to be considered to enhance MT accuracy. The significance of events depth in P-wave amplitude MT inversion and the necessity to consider velocity model influence, especially presence of high velocity gradient, is highlighted by the presented results.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"181 9\",\"pages\":\"2787 - 2800\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00024-024-03570-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-024-03570-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03570-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

文章研究了利用第一 P 波振幅进行时域矩张量(MT)反演的可靠性,这种方法用于确定四个不同地震台网的震源机制。研究比较了两个地下采矿和两个人工水库监测地震网络的矩张量反演合成测试结果。分析旨在评估结果的一致性和准确性如何取决于不同的因素,如:网络配置、事件深度、速度模型、事件的焦点机制和应用噪声。研究结果强调了与其他变量和数据质量相比,网络配置对矩形张量反演可靠性的影响,并深入分析了提高矩形张量反演准确性必须考虑的不同因素。研究结果凸显了事件深度在 P 波振幅 MT 反演中的重要性,以及考虑速度模型影响的必要性,尤其是高速梯度的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reliability of Moment Tensor Inversion for Different Seismic Networks

Reliability of Moment Tensor Inversion for Different Seismic Networks

The article investigates the reliability of moment tensor (MT) inversion in time domain with use of first P-wave amplitude, a method used to determine the source mechanisms of earthquakes, across four different seismic networks. The study compares the synthetic tests results of MT inversion for two underground mining and two artificial reservoir monitoring seismic networks. The analysis was performed to assesses how consistency and accuracy of the results depend on different factors like: network configuration, events depth, velocity model, focal mechanism of event and applied noise. The findings highlight the impact of network configuration compared to other variables and data quality on the reliability of moment tensor inversion and provide insights into different factors which have to be considered to enhance MT accuracy. The significance of events depth in P-wave amplitude MT inversion and the necessity to consider velocity model influence, especially presence of high velocity gradient, is highlighted by the presented results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信