{"title":"平衡和不平衡条件下 3 [省略公式] 并网和独立光伏系统的改进型数字多谐振控制器","authors":"Kamran Zeb , T.D.C. Busarello , Waqar Uddin , Muhammad Khalid","doi":"10.1016/j.asej.2024.103036","DOIUrl":null,"url":null,"abstract":"<div><div>With the exponential penetration of Photovoltaic (PV) plants into the power grid, advanced current controllers should be employed in grid-tied power converters in order to efficiently inject high quality current synchronized with the grid voltage. This research presents the modeling and design of a digital multi-resonant controller to feed-in high quality current. The novelty lies in designing the control in a superior manner to conventional techniques. As an outcome, practical engineers discover an easy, fast, robust, and accurate control method. The proposed 5-kVA PV system can inject active and reactive power effectively while staying resilient to imbalance scenarios. Synchronization is accomplished via a synchronous reference frame (SRF) based phase locked loop (PLL) that performs effectively even with distorted and nonideal grids. The practicality and efficacy of the developed controller is verified both in simulation (PSIM and code composer studio) and Hardware in Loop (HIL) via Typhoon 402 and TMS32F28335 experiments. The devised controller is evaluated in both grid-connected and standalone modes under a wide range of disturbances, distortions, and non-ideal conditions. The simulation and HIL results validate the robustness, fastness, resilience, and effectiveness of the proposed controller compared with a well-tuned conventional proportional resonant (PR) controller.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 11","pages":"Article 103036"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved digital multi-resonant controller for 3 ϕ grid-tied and standalone PV system under balanced and unbalanced conditions\",\"authors\":\"Kamran Zeb , T.D.C. Busarello , Waqar Uddin , Muhammad Khalid\",\"doi\":\"10.1016/j.asej.2024.103036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the exponential penetration of Photovoltaic (PV) plants into the power grid, advanced current controllers should be employed in grid-tied power converters in order to efficiently inject high quality current synchronized with the grid voltage. This research presents the modeling and design of a digital multi-resonant controller to feed-in high quality current. The novelty lies in designing the control in a superior manner to conventional techniques. As an outcome, practical engineers discover an easy, fast, robust, and accurate control method. The proposed 5-kVA PV system can inject active and reactive power effectively while staying resilient to imbalance scenarios. Synchronization is accomplished via a synchronous reference frame (SRF) based phase locked loop (PLL) that performs effectively even with distorted and nonideal grids. The practicality and efficacy of the developed controller is verified both in simulation (PSIM and code composer studio) and Hardware in Loop (HIL) via Typhoon 402 and TMS32F28335 experiments. The devised controller is evaluated in both grid-connected and standalone modes under a wide range of disturbances, distortions, and non-ideal conditions. The simulation and HIL results validate the robustness, fastness, resilience, and effectiveness of the proposed controller compared with a well-tuned conventional proportional resonant (PR) controller.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"15 11\",\"pages\":\"Article 103036\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924004118\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924004118","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Improved digital multi-resonant controller for 3 ϕ grid-tied and standalone PV system under balanced and unbalanced conditions
With the exponential penetration of Photovoltaic (PV) plants into the power grid, advanced current controllers should be employed in grid-tied power converters in order to efficiently inject high quality current synchronized with the grid voltage. This research presents the modeling and design of a digital multi-resonant controller to feed-in high quality current. The novelty lies in designing the control in a superior manner to conventional techniques. As an outcome, practical engineers discover an easy, fast, robust, and accurate control method. The proposed 5-kVA PV system can inject active and reactive power effectively while staying resilient to imbalance scenarios. Synchronization is accomplished via a synchronous reference frame (SRF) based phase locked loop (PLL) that performs effectively even with distorted and nonideal grids. The practicality and efficacy of the developed controller is verified both in simulation (PSIM and code composer studio) and Hardware in Loop (HIL) via Typhoon 402 and TMS32F28335 experiments. The devised controller is evaluated in both grid-connected and standalone modes under a wide range of disturbances, distortions, and non-ideal conditions. The simulation and HIL results validate the robustness, fastness, resilience, and effectiveness of the proposed controller compared with a well-tuned conventional proportional resonant (PR) controller.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.