{"title":"斯塔克偏移影响下的苏(1, 1) 杰恩斯-康明斯模型的热特性","authors":"S Mirzaei, A Chenaghlou, Y Alishamsi","doi":"10.1007/s10773-024-05738-0","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the thermal properties of a system including a single-mode cavity interacting with a two-level atom at temperature <i>T</i> under the effect of the Stark shift. Thus, the partition function and then the thermal density matrix of the atom-field system will be needed. Using the generators of the <span>\\(\\varvec{su(1,1)}\\)</span> algebra, we first compute the total excitation number which commutes with the Hamiltonian of the system. Considering the total excitation number, the Hamiltonian is represented by a block diagonal matrix. We solve exactly our model and calculate the energy eigenvalues and corresponding eigenstates. We analyze the fidelity as numerical criterion of the closeness of the thermal atom-cavity system at two temperatures. The effect of the Stark shift coefficients on the fidelity can be studied. Moreover, we will examine the thermodynamical properties of the thermal atom-field system using the Helmholtz free energy, entropy, internal energy and heat capacity. The dependence of the temperature and Stark shift parameters on the thermodynamical properties will be discussed.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Properties of the su(1, 1) Jaynes-Cummings Model under the Influence of the Stark Shift\",\"authors\":\"S Mirzaei, A Chenaghlou, Y Alishamsi\",\"doi\":\"10.1007/s10773-024-05738-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore the thermal properties of a system including a single-mode cavity interacting with a two-level atom at temperature <i>T</i> under the effect of the Stark shift. Thus, the partition function and then the thermal density matrix of the atom-field system will be needed. Using the generators of the <span>\\\\(\\\\varvec{su(1,1)}\\\\)</span> algebra, we first compute the total excitation number which commutes with the Hamiltonian of the system. Considering the total excitation number, the Hamiltonian is represented by a block diagonal matrix. We solve exactly our model and calculate the energy eigenvalues and corresponding eigenstates. We analyze the fidelity as numerical criterion of the closeness of the thermal atom-cavity system at two temperatures. The effect of the Stark shift coefficients on the fidelity can be studied. Moreover, we will examine the thermodynamical properties of the thermal atom-field system using the Helmholtz free energy, entropy, internal energy and heat capacity. The dependence of the temperature and Stark shift parameters on the thermodynamical properties will be discussed.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"63 9\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05738-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05738-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们探索的是在斯塔克偏移作用下,温度为 T 的单模腔与双原子相互作用的系统的热特性。因此,我们需要原子-场系统的分割函数和热密度矩阵。利用 \(\varvec{su(1,1)}\) 代数的生成器,我们首先计算与系统哈密顿相乘的总激发数。考虑到总激励数,哈密顿由一个对角分块矩阵表示。我们对模型进行精确求解,并计算能量特征值和相应的特征状态。我们分析了保真度,以此作为两个温度下热原子-空腔系统接近性的数值标准。我们可以研究斯塔克偏移系数对保真度的影响。此外,我们还将利用亥姆霍兹自由能、熵、内能和热容量来研究热原子-场系统的热力学特性。我们将讨论温度和斯塔克偏移参数对热力学性质的依赖性。
Thermal Properties of the su(1, 1) Jaynes-Cummings Model under the Influence of the Stark Shift
We explore the thermal properties of a system including a single-mode cavity interacting with a two-level atom at temperature T under the effect of the Stark shift. Thus, the partition function and then the thermal density matrix of the atom-field system will be needed. Using the generators of the \(\varvec{su(1,1)}\) algebra, we first compute the total excitation number which commutes with the Hamiltonian of the system. Considering the total excitation number, the Hamiltonian is represented by a block diagonal matrix. We solve exactly our model and calculate the energy eigenvalues and corresponding eigenstates. We analyze the fidelity as numerical criterion of the closeness of the thermal atom-cavity system at two temperatures. The effect of the Stark shift coefficients on the fidelity can be studied. Moreover, we will examine the thermodynamical properties of the thermal atom-field system using the Helmholtz free energy, entropy, internal energy and heat capacity. The dependence of the temperature and Stark shift parameters on the thermodynamical properties will be discussed.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.