{"title":"量子增强型机器学习中的变量数据编码和相关性","authors":"Ming-Hao Wang, Hua Lü","doi":"10.1088/1674-1056/ad5c3b","DOIUrl":null,"url":null,"abstract":"Leveraging the extraordinary phenomena of quantum superposition and quantum correlation, quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers. This paper tackles two pivotal challenges in the realm of quantum computing: firstly, the development of an effective encoding protocol for translating classical data into quantum states, a critical step for any quantum computation. Different encoding strategies can significantly influence quantum computer performance. Secondly, we address the need to counteract the inevitable noise that can hinder quantum acceleration. Our primary contribution is the introduction of a novel variational data encoding method, grounded in quantum regression algorithm models. By adapting the learning concept from machine learning, we render data encoding a learnable process. This allowed us to study the role of quantum correlation in data encoding. Through numerical simulations of various regression tasks, we demonstrate the efficacy of our variational data encoding, particularly post-learning from instructional data. Moreover, we delve into the role of quantum correlation in enhancing task performance, especially in noisy environments. Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference, thus advancing the frontier of quantum computing.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational data encoding and correlations in quantum-enhanced machine learning\",\"authors\":\"Ming-Hao Wang, Hua Lü\",\"doi\":\"10.1088/1674-1056/ad5c3b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging the extraordinary phenomena of quantum superposition and quantum correlation, quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers. This paper tackles two pivotal challenges in the realm of quantum computing: firstly, the development of an effective encoding protocol for translating classical data into quantum states, a critical step for any quantum computation. Different encoding strategies can significantly influence quantum computer performance. Secondly, we address the need to counteract the inevitable noise that can hinder quantum acceleration. Our primary contribution is the introduction of a novel variational data encoding method, grounded in quantum regression algorithm models. By adapting the learning concept from machine learning, we render data encoding a learnable process. This allowed us to study the role of quantum correlation in data encoding. Through numerical simulations of various regression tasks, we demonstrate the efficacy of our variational data encoding, particularly post-learning from instructional data. Moreover, we delve into the role of quantum correlation in enhancing task performance, especially in noisy environments. Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference, thus advancing the frontier of quantum computing.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad5c3b\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad5c3b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Variational data encoding and correlations in quantum-enhanced machine learning
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation, quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers. This paper tackles two pivotal challenges in the realm of quantum computing: firstly, the development of an effective encoding protocol for translating classical data into quantum states, a critical step for any quantum computation. Different encoding strategies can significantly influence quantum computer performance. Secondly, we address the need to counteract the inevitable noise that can hinder quantum acceleration. Our primary contribution is the introduction of a novel variational data encoding method, grounded in quantum regression algorithm models. By adapting the learning concept from machine learning, we render data encoding a learnable process. This allowed us to study the role of quantum correlation in data encoding. Through numerical simulations of various regression tasks, we demonstrate the efficacy of our variational data encoding, particularly post-learning from instructional data. Moreover, we delve into the role of quantum correlation in enhancing task performance, especially in noisy environments. Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference, thus advancing the frontier of quantum computing.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.