Shang-Yu Zhao, Kai Ou, Xing-Xing Gu, Zhi-Min Dan, Jiu-Jun Zhang, Ya-Xiong Wang
{"title":"用于联合估算充电状态和健康状态的新型变压器嵌入式锂离子电池模型","authors":"Shang-Yu Zhao, Kai Ou, Xing-Xing Gu, Zhi-Min Dan, Jiu-Jun Zhang, Ya-Xiong Wang","doi":"10.1007/s12598-024-02942-z","DOIUrl":null,"url":null,"abstract":"<div><p>The state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries affect their operating performance and safety. The coupled SOC and SOH are difficult to estimate adaptively in multi-temperatures and aging. This paper proposes a novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health. The battery model is formulated across temperatures and aging, which provides accurate feedback for unscented Kalman filter-based SOC estimation and aging information. The open-circuit voltages (OCVs) are corrected globally by the temporal convolutional network with accurate OCVs in time-sliding windows. Arrhenius equation is combined with estimated SOH for temperature-aging migration. A novel transformer model is introduced, which integrates multiscale attention with the transformer’s encoder to incorporate SOC-voltage differential derived from battery model. This model simultaneously extracts local aging information from various sequences and aging channels using a self-attention and depth-separate convolution. By leveraging multi-head attention, the model establishes information dependency relationships across different aging levels, enabling rapid and precise SOH estimation. Specifically, the root mean square error for SOC and SOH under conditions of 15 °C dynamic stress test and 25 °C constant current cycling was less than 0.9% and 0.8%, respectively. Notably, the proposed method exhibits excellent adaptability to varying temperature and aging conditions, accurately estimating SOC and SOH.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 11","pages":"5637 - 5651"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health\",\"authors\":\"Shang-Yu Zhao, Kai Ou, Xing-Xing Gu, Zhi-Min Dan, Jiu-Jun Zhang, Ya-Xiong Wang\",\"doi\":\"10.1007/s12598-024-02942-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries affect their operating performance and safety. The coupled SOC and SOH are difficult to estimate adaptively in multi-temperatures and aging. This paper proposes a novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health. The battery model is formulated across temperatures and aging, which provides accurate feedback for unscented Kalman filter-based SOC estimation and aging information. The open-circuit voltages (OCVs) are corrected globally by the temporal convolutional network with accurate OCVs in time-sliding windows. Arrhenius equation is combined with estimated SOH for temperature-aging migration. A novel transformer model is introduced, which integrates multiscale attention with the transformer’s encoder to incorporate SOC-voltage differential derived from battery model. This model simultaneously extracts local aging information from various sequences and aging channels using a self-attention and depth-separate convolution. By leveraging multi-head attention, the model establishes information dependency relationships across different aging levels, enabling rapid and precise SOH estimation. Specifically, the root mean square error for SOC and SOH under conditions of 15 °C dynamic stress test and 25 °C constant current cycling was less than 0.9% and 0.8%, respectively. Notably, the proposed method exhibits excellent adaptability to varying temperature and aging conditions, accurately estimating SOC and SOH.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"43 11\",\"pages\":\"5637 - 5651\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02942-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02942-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health
The state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries affect their operating performance and safety. The coupled SOC and SOH are difficult to estimate adaptively in multi-temperatures and aging. This paper proposes a novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health. The battery model is formulated across temperatures and aging, which provides accurate feedback for unscented Kalman filter-based SOC estimation and aging information. The open-circuit voltages (OCVs) are corrected globally by the temporal convolutional network with accurate OCVs in time-sliding windows. Arrhenius equation is combined with estimated SOH for temperature-aging migration. A novel transformer model is introduced, which integrates multiscale attention with the transformer’s encoder to incorporate SOC-voltage differential derived from battery model. This model simultaneously extracts local aging information from various sequences and aging channels using a self-attention and depth-separate convolution. By leveraging multi-head attention, the model establishes information dependency relationships across different aging levels, enabling rapid and precise SOH estimation. Specifically, the root mean square error for SOC and SOH under conditions of 15 °C dynamic stress test and 25 °C constant current cycling was less than 0.9% and 0.8%, respectively. Notably, the proposed method exhibits excellent adaptability to varying temperature and aging conditions, accurately estimating SOC and SOH.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.