通过在掺氮多孔碳上掺杂 P 来调节 FeWO4 电子结构,从而提高锌-空气电池中的氧还原活性

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Gong, Dai-Jie Deng, Huan Wang, Jian-Chun Wu, Lin-Hua Zhu, Cheng Yan, He-Nan Li, Li Xu
{"title":"通过在掺氮多孔碳上掺杂 P 来调节 FeWO4 电子结构,从而提高锌-空气电池中的氧还原活性","authors":"Yue Gong,&nbsp;Dai-Jie Deng,&nbsp;Huan Wang,&nbsp;Jian-Chun Wu,&nbsp;Lin-Hua Zhu,&nbsp;Cheng Yan,&nbsp;He-Nan Li,&nbsp;Li Xu","doi":"10.1007/s12598-024-02960-x","DOIUrl":null,"url":null,"abstract":"<div><p>As a catalyst of the air cathode in zinc–air batteries, tungstic acid ferrous (FeWO<sub>4</sub>), a nanoscale transition metal tungstate, shows a broad application prospect in the oxygen reduction reaction (ORR). While FeWO<sub>4</sub> possesses favorable electrochemical properties and thermodynamic stability, its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate, limiting the ORR catalytic activity. In this work, the electronic structure of FeWO<sub>4</sub> is significantly modulated by introducing phosphorus (P) atoms with abundant valence electrons. The P doping can adjust the electronic structure of FeWO<sub>4</sub> and then optimize oxygen-containing intermediates' absorption/desorption efficiency to achieve improved ORR activity. Furthermore, the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate (P–FeWO<sub>4</sub>/PNC). The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P–FeWO<sub>4</sub>/PNC surface and serves as mass transport channels for reactants and intermediates. The P–FeWO<sub>4</sub>/PNC demonstrates ORR performance (<i>E</i><sub>1/2</sub> = 0.86 V vs. RHE). Furthermore, the zinc–air batteries incorporating the P–FeWO<sub>4</sub>/PNC composite demonstrate an increased peak power density (172.2 mW·cm<sup>−2</sup>), high specific capacity (810.1 mAh·g<sup>−1</sup>), and sustained long-term cycling stability lasting up to 240 h. This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts, but also guides their utilization in zinc–air batteries.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 1","pages":"240 - 252"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulated FeWO4 electronic structure via P doping on nitrogen-doped porous carbon for improved oxygen reduction activity in zinc–air batteries\",\"authors\":\"Yue Gong,&nbsp;Dai-Jie Deng,&nbsp;Huan Wang,&nbsp;Jian-Chun Wu,&nbsp;Lin-Hua Zhu,&nbsp;Cheng Yan,&nbsp;He-Nan Li,&nbsp;Li Xu\",\"doi\":\"10.1007/s12598-024-02960-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a catalyst of the air cathode in zinc–air batteries, tungstic acid ferrous (FeWO<sub>4</sub>), a nanoscale transition metal tungstate, shows a broad application prospect in the oxygen reduction reaction (ORR). While FeWO<sub>4</sub> possesses favorable electrochemical properties and thermodynamic stability, its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate, limiting the ORR catalytic activity. In this work, the electronic structure of FeWO<sub>4</sub> is significantly modulated by introducing phosphorus (P) atoms with abundant valence electrons. The P doping can adjust the electronic structure of FeWO<sub>4</sub> and then optimize oxygen-containing intermediates' absorption/desorption efficiency to achieve improved ORR activity. Furthermore, the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate (P–FeWO<sub>4</sub>/PNC). The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P–FeWO<sub>4</sub>/PNC surface and serves as mass transport channels for reactants and intermediates. The P–FeWO<sub>4</sub>/PNC demonstrates ORR performance (<i>E</i><sub>1/2</sub> = 0.86 V vs. RHE). Furthermore, the zinc–air batteries incorporating the P–FeWO<sub>4</sub>/PNC composite demonstrate an increased peak power density (172.2 mW·cm<sup>−2</sup>), high specific capacity (810.1 mAh·g<sup>−1</sup>), and sustained long-term cycling stability lasting up to 240 h. This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts, but also guides their utilization in zinc–air batteries.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 1\",\"pages\":\"240 - 252\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02960-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02960-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为锌-空气电池空气阴极的催化剂,纳米级过渡金属钨酸亚铁(FeWO4)在氧还原反应(ORR)中展现出广阔的应用前景。虽然 FeWO4 具有良好的电化学性能和热力学稳定性,但其固有的半导体特性导致电子转移速度相对较慢,限制了 ORR 催化活性。在这项研究中,通过引入价电子丰富的磷(P)原子,FeWO4 的电子结构发生了显著变化。P 原子的掺杂可以调整 FeWO4 的电子结构,进而优化含氧中间体的吸收/解吸效率,提高 ORR 活性。此外,还利用氯化钠模板构建了多孔碳骨架,用于锚定磷掺杂的钨酸铁(P-FeWO4/PNC)。多孔碳骨架为 P-FeWO4/PNC 表面的吸收/解吸和氧化还原反应提供了大量活性位点,并成为反应物和中间产物的质量传输通道。P-FeWO4/PNC 具有 ORR 性能(E1/2 = 0.86 V,相对于 RHE)。此外,含有 P-FeWO4/PNC 复合材料的锌-空气电池显示出更高的峰值功率密度(172.2 mW-cm-2)、更高的比容量(810.1 mAh-g-1)以及持续长达 240 小时的长期循环稳定性。这项研究不仅促进了具有成本效益的钨基非贵金属 ORR 催化剂的发展,还指导了它们在锌-空气电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulated FeWO4 electronic structure via P doping on nitrogen-doped porous carbon for improved oxygen reduction activity in zinc–air batteries

Modulated FeWO4 electronic structure via P doping on nitrogen-doped porous carbon for improved oxygen reduction activity in zinc–air batteries

As a catalyst of the air cathode in zinc–air batteries, tungstic acid ferrous (FeWO4), a nanoscale transition metal tungstate, shows a broad application prospect in the oxygen reduction reaction (ORR). While FeWO4 possesses favorable electrochemical properties and thermodynamic stability, its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate, limiting the ORR catalytic activity. In this work, the electronic structure of FeWO4 is significantly modulated by introducing phosphorus (P) atoms with abundant valence electrons. The P doping can adjust the electronic structure of FeWO4 and then optimize oxygen-containing intermediates' absorption/desorption efficiency to achieve improved ORR activity. Furthermore, the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate (P–FeWO4/PNC). The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P–FeWO4/PNC surface and serves as mass transport channels for reactants and intermediates. The P–FeWO4/PNC demonstrates ORR performance (E1/2 = 0.86 V vs. RHE). Furthermore, the zinc–air batteries incorporating the P–FeWO4/PNC composite demonstrate an increased peak power density (172.2 mW·cm−2), high specific capacity (810.1 mAh·g−1), and sustained long-term cycling stability lasting up to 240 h. This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts, but also guides their utilization in zinc–air batteries.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信