在介孔生物碳基质中合成 CoFe 纳米粒子的孔隙封闭策略,作为锌-空气电池的先进双功能氧电催化剂

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang-Jun Zheng, Hong-Yu Gong, Na Zhang, Wen-Hua Shi, Qing Sun, Yu-Hang Qian, Li-Kun Jiang, Xue-Cheng Cao, Rui-Zhi Yang, Chang-Zhou Yuan
{"title":"在介孔生物碳基质中合成 CoFe 纳米粒子的孔隙封闭策略,作为锌-空气电池的先进双功能氧电催化剂","authors":"Xiang-Jun Zheng,&nbsp;Hong-Yu Gong,&nbsp;Na Zhang,&nbsp;Wen-Hua Shi,&nbsp;Qing Sun,&nbsp;Yu-Hang Qian,&nbsp;Li-Kun Jiang,&nbsp;Xue-Cheng Cao,&nbsp;Rui-Zhi Yang,&nbsp;Chang-Zhou Yuan","doi":"10.1007/s12598-024-02969-2","DOIUrl":null,"url":null,"abstract":"<p>Designing rational transition-metal/carbon composites with highly dispersed and firmly anchored nanoparticles (NPs) to prevent agglomeration and shedding is crucial for realizing excellent electrocatalytic performances. Herein, a biomass pore-confined strategy based on mesoporous willow catkin is explored to obtain uniformly dispersed CoFe NPs in N-doped carbon nanotubes and hollow carbon fibers (CoFe@N-CNTs/HCFs). The resultant catalyst exhibits enhanced electrocatalytic performance, which affords a half-wave potential of 0.86 V (vs. RHE) with a limited current density of 6.0 mA·cm<sup>−2</sup> for oxygen reduction reaction and potential of 1.67 V (vs. RHE) at 10 mA·cm<sup>−2</sup> in 0.1 M KOH for oxygen evolution reaction. When applied to rechargeable zinc–air batteries, a maximum power density of 340 mW·cm<sup>−2</sup> and long-term cyclic durability over 800 h are achieved. Such superior bifunctional electrocatalytic activities are ascribed to the biocarbon matrix with abundant mesopores and unobstructed hollow channels, CoFe NPs with high dispersion and controllable nanoscale and the hybrid composite with optimized electronic structure. This work presents an effective approach for constraining the size and dispersion of NPs in a low-cost biocarbon substrate, offering valuable insights for designing advanced oxygen electrocatalysts.</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 11","pages":"5757 - 5768"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc–air battery\",\"authors\":\"Xiang-Jun Zheng,&nbsp;Hong-Yu Gong,&nbsp;Na Zhang,&nbsp;Wen-Hua Shi,&nbsp;Qing Sun,&nbsp;Yu-Hang Qian,&nbsp;Li-Kun Jiang,&nbsp;Xue-Cheng Cao,&nbsp;Rui-Zhi Yang,&nbsp;Chang-Zhou Yuan\",\"doi\":\"10.1007/s12598-024-02969-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing rational transition-metal/carbon composites with highly dispersed and firmly anchored nanoparticles (NPs) to prevent agglomeration and shedding is crucial for realizing excellent electrocatalytic performances. Herein, a biomass pore-confined strategy based on mesoporous willow catkin is explored to obtain uniformly dispersed CoFe NPs in N-doped carbon nanotubes and hollow carbon fibers (CoFe@N-CNTs/HCFs). The resultant catalyst exhibits enhanced electrocatalytic performance, which affords a half-wave potential of 0.86 V (vs. RHE) with a limited current density of 6.0 mA·cm<sup>−2</sup> for oxygen reduction reaction and potential of 1.67 V (vs. RHE) at 10 mA·cm<sup>−2</sup> in 0.1 M KOH for oxygen evolution reaction. When applied to rechargeable zinc–air batteries, a maximum power density of 340 mW·cm<sup>−2</sup> and long-term cyclic durability over 800 h are achieved. Such superior bifunctional electrocatalytic activities are ascribed to the biocarbon matrix with abundant mesopores and unobstructed hollow channels, CoFe NPs with high dispersion and controllable nanoscale and the hybrid composite with optimized electronic structure. This work presents an effective approach for constraining the size and dispersion of NPs in a low-cost biocarbon substrate, offering valuable insights for designing advanced oxygen electrocatalysts.</p>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"43 11\",\"pages\":\"5757 - 5768\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02969-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02969-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要设计合理的过渡金属/碳复合材料,使其具有高度分散和牢固锚定的纳米粒子(NPs),以防止团聚和脱落,对于实现优异的电催化性能至关重要。本文探索了一种基于介孔柳枝荑的生物质孔隙约束策略,以获得均匀分散在掺杂 N 的碳纳米管和中空碳纤维(CoFe@N-CNTs/HCFs)中的 CoFe NPs。生成的催化剂具有更强的电催化性能,在 6.0 mA-cm-2 的有限电流密度下,氧还原反应的半波电位为 0.86 V(相对于 RHE);在 0.1 M KOH 中,10 mA-cm-2 的电流密度下,氧进化反应的半波电位为 1.67 V(相对于 RHE)。当应用于可充电锌-空气电池时,可达到 340 mW-cm-2 的最大功率密度和超过 800 小时的长期循环耐久性。如此优异的双功能电催化活性归功于具有丰富中孔和畅通中空通道的生物碳基质、高分散性和可控纳米尺度的 CoFe NPs 以及具有优化电子结构的混合复合材料。这项工作提出了一种在低成本生物碳基质中限制 NPs 尺寸和分散的有效方法,为设计先进的氧电催化剂提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc–air battery

A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc–air battery

Designing rational transition-metal/carbon composites with highly dispersed and firmly anchored nanoparticles (NPs) to prevent agglomeration and shedding is crucial for realizing excellent electrocatalytic performances. Herein, a biomass pore-confined strategy based on mesoporous willow catkin is explored to obtain uniformly dispersed CoFe NPs in N-doped carbon nanotubes and hollow carbon fibers (CoFe@N-CNTs/HCFs). The resultant catalyst exhibits enhanced electrocatalytic performance, which affords a half-wave potential of 0.86 V (vs. RHE) with a limited current density of 6.0 mA·cm−2 for oxygen reduction reaction and potential of 1.67 V (vs. RHE) at 10 mA·cm−2 in 0.1 M KOH for oxygen evolution reaction. When applied to rechargeable zinc–air batteries, a maximum power density of 340 mW·cm−2 and long-term cyclic durability over 800 h are achieved. Such superior bifunctional electrocatalytic activities are ascribed to the biocarbon matrix with abundant mesopores and unobstructed hollow channels, CoFe NPs with high dispersion and controllable nanoscale and the hybrid composite with optimized electronic structure. This work presents an effective approach for constraining the size and dispersion of NPs in a low-cost biocarbon substrate, offering valuable insights for designing advanced oxygen electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信