Cs3Sb2Br9/Sb-C3N4 Z 型异质结上的 Sb-N 电荷转移桥用于促进光催化还原 CO2

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao-Kun Wang  (, ), Meng-Ran Zhang  (, ), Ke Su  (, ), Zhao-Lei Liu  (, ), Yan-Fei Mu  (, ), Fu-Quan Bai  (, ), Min Zhang  (, ), Tong-Bu Lu  (, )
{"title":"Cs3Sb2Br9/Sb-C3N4 Z 型异质结上的 Sb-N 电荷转移桥用于促进光催化还原 CO2","authors":"Hao-Kun Wang \n (,&nbsp;),&nbsp;Meng-Ran Zhang \n (,&nbsp;),&nbsp;Ke Su \n (,&nbsp;),&nbsp;Zhao-Lei Liu \n (,&nbsp;),&nbsp;Yan-Fei Mu \n (,&nbsp;),&nbsp;Fu-Quan Bai \n (,&nbsp;),&nbsp;Min Zhang \n (,&nbsp;),&nbsp;Tong-Bu Lu \n (,&nbsp;)","doi":"10.1007/s40843-024-3035-4","DOIUrl":null,"url":null,"abstract":"<div><p>Developing highly efficient heterostructural photocatalysts for direct CO<sub>2</sub> reduction coupled with water oxidation remains challenging, the key to which is to establish an efficient interfacial charge transport channel. Herein, we present a Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb–C<sub>3</sub>N<sub>4</sub> Z-scheme heterojunction prepared with an <i>in-situ</i> growth method based on the Sb atomic pinning effect. As revealed by the analysis of experimental and theoretical calculation results, the introduction of Sb anchors on C<sub>3</sub>N<sub>4</sub> leads to the formation of an Sb–N charge transfer bridge between Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> and C<sub>3</sub>N<sub>4</sub>, promoting interfacial charge communication over Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb–C<sub>3</sub>N<sub>4</sub> heterojunction. Moreover, it can induce the heterojunction interfacial charge transfer pathway between Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> and C<sub>3</sub>N<sub>4</sub> to change from type II to the type Z-scheme, enabling the change of the catalytic site from C<sub>3</sub>N<sub>4</sub> to Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>, thus promoting the CO<sub>2</sub> activation. As a result, Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb–C<sub>3</sub>N<sub>4</sub> achieves efficient CO<sub>2</sub> to CO photocatalytic conversion using water as the electron source under simulated solar light irradiation (100 mW·cm<sup>−2</sup>), with the yield of 198.4 µmol·g<sup>−1</sup>·h<sup>−1</sup>, which is nearly 3-fold and 9-fold over the counterpart synthesized catalyst without Sb anchors (Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/g–C<sub>3</sub>N<sub>4</sub>) and pure g–C<sub>3</sub>N<sub>4</sub>, respectively. This work provides a new alternative solution for the design of highly efficient heterojunction photocatalysts.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3176 - 3184"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sb–N charge transfer bridge over Cs3Sb2Br9/Sb–C3N4 Z-scheme heterojunction for boosting photocatalytic CO2 reduction\",\"authors\":\"Hao-Kun Wang \\n (,&nbsp;),&nbsp;Meng-Ran Zhang \\n (,&nbsp;),&nbsp;Ke Su \\n (,&nbsp;),&nbsp;Zhao-Lei Liu \\n (,&nbsp;),&nbsp;Yan-Fei Mu \\n (,&nbsp;),&nbsp;Fu-Quan Bai \\n (,&nbsp;),&nbsp;Min Zhang \\n (,&nbsp;),&nbsp;Tong-Bu Lu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3035-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing highly efficient heterostructural photocatalysts for direct CO<sub>2</sub> reduction coupled with water oxidation remains challenging, the key to which is to establish an efficient interfacial charge transport channel. Herein, we present a Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb–C<sub>3</sub>N<sub>4</sub> Z-scheme heterojunction prepared with an <i>in-situ</i> growth method based on the Sb atomic pinning effect. As revealed by the analysis of experimental and theoretical calculation results, the introduction of Sb anchors on C<sub>3</sub>N<sub>4</sub> leads to the formation of an Sb–N charge transfer bridge between Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> and C<sub>3</sub>N<sub>4</sub>, promoting interfacial charge communication over Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb–C<sub>3</sub>N<sub>4</sub> heterojunction. Moreover, it can induce the heterojunction interfacial charge transfer pathway between Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> and C<sub>3</sub>N<sub>4</sub> to change from type II to the type Z-scheme, enabling the change of the catalytic site from C<sub>3</sub>N<sub>4</sub> to Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>, thus promoting the CO<sub>2</sub> activation. As a result, Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb–C<sub>3</sub>N<sub>4</sub> achieves efficient CO<sub>2</sub> to CO photocatalytic conversion using water as the electron source under simulated solar light irradiation (100 mW·cm<sup>−2</sup>), with the yield of 198.4 µmol·g<sup>−1</sup>·h<sup>−1</sup>, which is nearly 3-fold and 9-fold over the counterpart synthesized catalyst without Sb anchors (Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/g–C<sub>3</sub>N<sub>4</sub>) and pure g–C<sub>3</sub>N<sub>4</sub>, respectively. This work provides a new alternative solution for the design of highly efficient heterojunction photocatalysts.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 10\",\"pages\":\"3176 - 3184\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3035-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3035-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发用于直接还原二氧化碳和氧化水的高效异质结构光催化剂仍然具有挑战性,其关键在于建立高效的界面电荷传输通道。在此,我们介绍了一种基于锑原子钉效应的原位生长方法制备的 Cs3Sb2Br9/Sb-C3N4 Z 型异质结。实验和理论计算结果分析表明,在 C3N4 上引入 Sb 锚点会在 Cs3Sb2Br9 和 C3N4 之间形成 Sb-N 电荷转移桥,促进 Cs3Sb2Br9/Sb-C3N4 异质结的界面电荷通讯。此外,它还能诱导 Cs3Sb2Br9 和 C3N4 之间的异质结界面电荷转移途径从 II 型转变为 Z 型,使催化位点从 C3N4 转变为 Cs3Sb2Br9,从而促进二氧化碳的活化。因此,Cs3Sb2Br9/Sb-C3N4 在模拟太阳光辐照(100 mW-cm-2)条件下,以水为电子源,实现了 CO2 到 CO 的高效光催化转化,产率达到 198.4 µmol-g-1-h-1,分别是不含 Sb 锚的催化剂(Cs3Sb2Br9/g-C3N4)和纯 g-C3N4 的近 3 倍和 9 倍。这项工作为设计高效异质结光催化剂提供了一种新的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Sb–N charge transfer bridge over Cs3Sb2Br9/Sb–C3N4 Z-scheme heterojunction for boosting photocatalytic CO2 reduction

The Sb–N charge transfer bridge over Cs3Sb2Br9/Sb–C3N4 Z-scheme heterojunction for boosting photocatalytic CO2 reduction

Developing highly efficient heterostructural photocatalysts for direct CO2 reduction coupled with water oxidation remains challenging, the key to which is to establish an efficient interfacial charge transport channel. Herein, we present a Cs3Sb2Br9/Sb–C3N4 Z-scheme heterojunction prepared with an in-situ growth method based on the Sb atomic pinning effect. As revealed by the analysis of experimental and theoretical calculation results, the introduction of Sb anchors on C3N4 leads to the formation of an Sb–N charge transfer bridge between Cs3Sb2Br9 and C3N4, promoting interfacial charge communication over Cs3Sb2Br9/Sb–C3N4 heterojunction. Moreover, it can induce the heterojunction interfacial charge transfer pathway between Cs3Sb2Br9 and C3N4 to change from type II to the type Z-scheme, enabling the change of the catalytic site from C3N4 to Cs3Sb2Br9, thus promoting the CO2 activation. As a result, Cs3Sb2Br9/Sb–C3N4 achieves efficient CO2 to CO photocatalytic conversion using water as the electron source under simulated solar light irradiation (100 mW·cm−2), with the yield of 198.4 µmol·g−1·h−1, which is nearly 3-fold and 9-fold over the counterpart synthesized catalyst without Sb anchors (Cs3Sb2Br9/g–C3N4) and pure g–C3N4, respectively. This work provides a new alternative solution for the design of highly efficient heterojunction photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信