Pei Ma
(, ), Yaoyang Zhang
(, ), Wenbin Li
(, ), Jun Luo
(, ), Longfei Wen
(, ), Guochuan Tang
(, ), Jingjing Gai
(, ), Qingbao Wang
(, ), Lingfei Zhao
(, ), Junmin Ge
(, ), Weihua Chen
(, )
{"title":"定制合金反应诱导的半相干界面,引导钠的成核和生长,用于长期无阳极钠金属电池","authors":"Pei Ma \n (, ), Yaoyang Zhang \n (, ), Wenbin Li \n (, ), Jun Luo \n (, ), Longfei Wen \n (, ), Guochuan Tang \n (, ), Jingjing Gai \n (, ), Qingbao Wang \n (, ), Lingfei Zhao \n (, ), Junmin Ge \n (, ), Weihua Chen \n (, )","doi":"10.1007/s40843-024-3084-4","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium metal batteries are emerging as promising energy storage technologies owing to their high-energy density and rich resources. However, the challenge of achieving continuous operation at high areal capacity hinders the application of this system. Here, a robust two-dimensional tin/sodium–tin alloy interface was introduced onto an Al substrate as an anode via an industrial electroplating strategy. Unlike the widely accepted <i>in situ</i> formation of Na<sub>15</sub>Sn<sub>4</sub> alloys, the formation of Na<sub>9</sub>Sn<sub>4</sub> alloys results in a semi-coherent interface with sodium due to low lattice mismatch (20.84%), which alleviates the lattice stress of sodium deposition and induces subsequent dense sodium deposition under high areal capacity. In addition, the strong interaction of Sn with anions allows more PF<sub>6</sub><sup>−</sup> to preferentially participate in the interfacial solvation structure, thereby facilitating the formation of a thin (10 nm) NaF-rich solid electrolyte interface. Therefore, the substrate can withstand a high areal capacity of 5 mA h cm<sup>−2</sup>, exhibiting a high average Coulombic efficiency of 99.7%. The full battery exhibits long-term cycling performance (600 cycles) with a low decay rate of 0.0018% per cycle at 60 mA g<sup>−1</sup>.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3648 - 3657"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries\",\"authors\":\"Pei Ma \\n (, ), Yaoyang Zhang \\n (, ), Wenbin Li \\n (, ), Jun Luo \\n (, ), Longfei Wen \\n (, ), Guochuan Tang \\n (, ), Jingjing Gai \\n (, ), Qingbao Wang \\n (, ), Lingfei Zhao \\n (, ), Junmin Ge \\n (, ), Weihua Chen \\n (, )\",\"doi\":\"10.1007/s40843-024-3084-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sodium metal batteries are emerging as promising energy storage technologies owing to their high-energy density and rich resources. However, the challenge of achieving continuous operation at high areal capacity hinders the application of this system. Here, a robust two-dimensional tin/sodium–tin alloy interface was introduced onto an Al substrate as an anode via an industrial electroplating strategy. Unlike the widely accepted <i>in situ</i> formation of Na<sub>15</sub>Sn<sub>4</sub> alloys, the formation of Na<sub>9</sub>Sn<sub>4</sub> alloys results in a semi-coherent interface with sodium due to low lattice mismatch (20.84%), which alleviates the lattice stress of sodium deposition and induces subsequent dense sodium deposition under high areal capacity. In addition, the strong interaction of Sn with anions allows more PF<sub>6</sub><sup>−</sup> to preferentially participate in the interfacial solvation structure, thereby facilitating the formation of a thin (10 nm) NaF-rich solid electrolyte interface. Therefore, the substrate can withstand a high areal capacity of 5 mA h cm<sup>−2</sup>, exhibiting a high average Coulombic efficiency of 99.7%. The full battery exhibits long-term cycling performance (600 cycles) with a low decay rate of 0.0018% per cycle at 60 mA g<sup>−1</sup>.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3648 - 3657\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3084-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3084-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
钠金属电池因其高能量密度和丰富的资源而成为一种前景广阔的储能技术。然而,实现高电容连续运行的挑战阻碍了这一系统的应用。在这里,通过工业电镀策略,在铝基板上引入了坚固的二维锡/钠锡合金界面作为阳极。与广泛接受的原位形成 Na15Sn4 合金不同,Na9Sn4 合金的形成由于晶格失配较低(20.84%),与钠形成了半相干界面,从而减轻了钠沉积的晶格应力,并诱导钠在高磁通量下进行后续致密沉积。此外,Sn 与阴离子的强相互作用使更多的 PF6- 优先参与界面溶解结构,从而促进了富含 NaF 的固体电解质薄界面(10 nm)的形成。因此,衬底可承受 5 mA h cm-2 的高电容,平均库仑效率高达 99.7%。整个电池具有长期循环性能(600 次循环),在 60 mA g-1 的条件下,每次循环的衰减率仅为 0.0018%。
Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries
Sodium metal batteries are emerging as promising energy storage technologies owing to their high-energy density and rich resources. However, the challenge of achieving continuous operation at high areal capacity hinders the application of this system. Here, a robust two-dimensional tin/sodium–tin alloy interface was introduced onto an Al substrate as an anode via an industrial electroplating strategy. Unlike the widely accepted in situ formation of Na15Sn4 alloys, the formation of Na9Sn4 alloys results in a semi-coherent interface with sodium due to low lattice mismatch (20.84%), which alleviates the lattice stress of sodium deposition and induces subsequent dense sodium deposition under high areal capacity. In addition, the strong interaction of Sn with anions allows more PF6− to preferentially participate in the interfacial solvation structure, thereby facilitating the formation of a thin (10 nm) NaF-rich solid electrolyte interface. Therefore, the substrate can withstand a high areal capacity of 5 mA h cm−2, exhibiting a high average Coulombic efficiency of 99.7%. The full battery exhibits long-term cycling performance (600 cycles) with a low decay rate of 0.0018% per cycle at 60 mA g−1.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.