基于晶体管的介质结构太阳能电池先进动态等效电路建模

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Eman Sawires;Sameh Abdellatif
{"title":"基于晶体管的介质结构太阳能电池先进动态等效电路建模","authors":"Eman Sawires;Sameh Abdellatif","doi":"10.1109/JPHOTOV.2024.3453653","DOIUrl":null,"url":null,"abstract":"This study introduces a pioneering transistor-based equivalent circuit model explicitly tailored for mesostructured-based solar cells, primarily focusing on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). By incorporating the experimental data spanning various inorganic, organic, and hybrid solar cell technologies across different optical injection levels, the model aims to provide a comprehensive understanding of the electrical behavior of these advanced photovoltaic devices. In addition to the circuit schematic, a Verilog-A script was created to elucidate the behavior of the cells, facilitating the utilization of such a block by the research community in developing interfacing circuits and implementing dc–dc converters within the framework of CMOS technology. Root-mean-square error analysis assesses the model's accuracy in predicting the experimental data. At the same time, the investigation extends to include the dynamic response of the cells through current–time analysis, as well as power losses. Notably, the response curve of the perovskite cell exhibits rapid escalation to peak current levels and displays heightened sensitivity to changes in illumination levels compared with DSSCs, with a response time of 1 ms for PSCs as opposed to 5 ms for DSSCs.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"14 6","pages":"882-889"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Transistor-Based Dynamic Equivalent Circuit Modeling of Mesostructured-Based Solar Cells\",\"authors\":\"Eman Sawires;Sameh Abdellatif\",\"doi\":\"10.1109/JPHOTOV.2024.3453653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a pioneering transistor-based equivalent circuit model explicitly tailored for mesostructured-based solar cells, primarily focusing on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). By incorporating the experimental data spanning various inorganic, organic, and hybrid solar cell technologies across different optical injection levels, the model aims to provide a comprehensive understanding of the electrical behavior of these advanced photovoltaic devices. In addition to the circuit schematic, a Verilog-A script was created to elucidate the behavior of the cells, facilitating the utilization of such a block by the research community in developing interfacing circuits and implementing dc–dc converters within the framework of CMOS technology. Root-mean-square error analysis assesses the model's accuracy in predicting the experimental data. At the same time, the investigation extends to include the dynamic response of the cells through current–time analysis, as well as power losses. Notably, the response curve of the perovskite cell exhibits rapid escalation to peak current levels and displays heightened sensitivity to changes in illumination levels compared with DSSCs, with a response time of 1 ms for PSCs as opposed to 5 ms for DSSCs.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"14 6\",\"pages\":\"882-889\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10676321/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10676321/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一个基于晶体管的开创性等效电路模型,该模型明确针对基于介质结构的太阳能电池量身定制,主要侧重于染料敏化太阳能电池(DSSC)和过氧化物太阳能电池(PSC)。该模型结合了跨越不同光学注入水平的各种无机、有机和混合太阳能电池技术的实验数据,旨在提供对这些先进光伏设备电气行为的全面理解。除电路原理图外,还创建了一个 Verilog-A 脚本,以阐明电池的行为,从而便于研究界在 CMOS 技术框架内开发接口电路和实施直流-直流转换器时利用该模块。均方根误差分析评估了模型预测实验数据的准确性。同时,研究还通过电流-时间分析扩展到电池的动态响应以及功率损耗。值得注意的是,与 DSSC 相比,包晶体电池的响应曲线显示出峰值电流水平的快速上升,并显示出对照明水平变化更高的敏感性,PSC 的响应时间为 1 毫秒,而 DSSC 为 5 毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Transistor-Based Dynamic Equivalent Circuit Modeling of Mesostructured-Based Solar Cells
This study introduces a pioneering transistor-based equivalent circuit model explicitly tailored for mesostructured-based solar cells, primarily focusing on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). By incorporating the experimental data spanning various inorganic, organic, and hybrid solar cell technologies across different optical injection levels, the model aims to provide a comprehensive understanding of the electrical behavior of these advanced photovoltaic devices. In addition to the circuit schematic, a Verilog-A script was created to elucidate the behavior of the cells, facilitating the utilization of such a block by the research community in developing interfacing circuits and implementing dc–dc converters within the framework of CMOS technology. Root-mean-square error analysis assesses the model's accuracy in predicting the experimental data. At the same time, the investigation extends to include the dynamic response of the cells through current–time analysis, as well as power losses. Notably, the response curve of the perovskite cell exhibits rapid escalation to peak current levels and displays heightened sensitivity to changes in illumination levels compared with DSSCs, with a response time of 1 ms for PSCs as opposed to 5 ms for DSSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信