{"title":"优化 MOF 中孔隙的微环境,提高三元组分混合物中乙烯的纯化率","authors":"Peng-Dan Zhang, Xue-Qian Wu, Qi Shuai, Jiamei Yu, Xin Zhang, Jian-Rong Li","doi":"10.1021/acsmaterialslett.4c01406","DOIUrl":null,"url":null,"abstract":"Designing an adsorbent that can simultaneously trap acetylene (C<sub>2</sub>H<sub>2</sub>) and ethane (C<sub>2</sub>H<sub>6</sub>) impurities for the one-step purification of ethylene (C<sub>2</sub>H<sub>4</sub>) remains a challenge. Herein, we constructed a novel Cu-based metal–organic framework (MOF), BUT-321, which exhibits the selective adsorption of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>H<sub>6</sub> over C<sub>2</sub>H<sub>4</sub>. It was found that the high density of oxygen binding sites within the pore channels of BUT-321 can build an optimal environment for stronger interactions with C<sub>2</sub>H<sub>6</sub>, compared to the isostructural MOF BUT-320. Column breakthrough experiments confirm the exceptional C<sub>2</sub>H<sub>4</sub> separation performance of BUT-321 from both binary (1:1 for C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> or C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub>) and ternary (1:1:1 for C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub>/C<sub>2</sub>H<sub>6</sub>) gas mixtures in a single step. In addition, BUT-321 exhibits good chemical stability in water and an alkaline solution, combined with its synthesis scalability, economic viability, and recyclability, thus facilitating the application for the one-step C<sub>2</sub>H<sub>4</sub> purification.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Microenvironment of Pores in an MOF for Boosting Ethylene Purification from a Ternary-Component Mixture\",\"authors\":\"Peng-Dan Zhang, Xue-Qian Wu, Qi Shuai, Jiamei Yu, Xin Zhang, Jian-Rong Li\",\"doi\":\"10.1021/acsmaterialslett.4c01406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing an adsorbent that can simultaneously trap acetylene (C<sub>2</sub>H<sub>2</sub>) and ethane (C<sub>2</sub>H<sub>6</sub>) impurities for the one-step purification of ethylene (C<sub>2</sub>H<sub>4</sub>) remains a challenge. Herein, we constructed a novel Cu-based metal–organic framework (MOF), BUT-321, which exhibits the selective adsorption of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>H<sub>6</sub> over C<sub>2</sub>H<sub>4</sub>. It was found that the high density of oxygen binding sites within the pore channels of BUT-321 can build an optimal environment for stronger interactions with C<sub>2</sub>H<sub>6</sub>, compared to the isostructural MOF BUT-320. Column breakthrough experiments confirm the exceptional C<sub>2</sub>H<sub>4</sub> separation performance of BUT-321 from both binary (1:1 for C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> or C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub>) and ternary (1:1:1 for C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub>/C<sub>2</sub>H<sub>6</sub>) gas mixtures in a single step. In addition, BUT-321 exhibits good chemical stability in water and an alkaline solution, combined with its synthesis scalability, economic viability, and recyclability, thus facilitating the application for the one-step C<sub>2</sub>H<sub>4</sub> purification.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.4c01406\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01406","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optimizing the Microenvironment of Pores in an MOF for Boosting Ethylene Purification from a Ternary-Component Mixture
Designing an adsorbent that can simultaneously trap acetylene (C2H2) and ethane (C2H6) impurities for the one-step purification of ethylene (C2H4) remains a challenge. Herein, we constructed a novel Cu-based metal–organic framework (MOF), BUT-321, which exhibits the selective adsorption of C2H2 and C2H6 over C2H4. It was found that the high density of oxygen binding sites within the pore channels of BUT-321 can build an optimal environment for stronger interactions with C2H6, compared to the isostructural MOF BUT-320. Column breakthrough experiments confirm the exceptional C2H4 separation performance of BUT-321 from both binary (1:1 for C2H2/C2H4 or C2H6/C2H4) and ternary (1:1:1 for C2H2/C2H4/C2H6) gas mixtures in a single step. In addition, BUT-321 exhibits good chemical stability in water and an alkaline solution, combined with its synthesis scalability, economic viability, and recyclability, thus facilitating the application for the one-step C2H4 purification.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.