Harihar Narayan, Ashok Kumar Jangid, Jiten R. Sharma, Rohit Verma, Umesh C. S. Yadav, Hitesh Kulhari, Prem Prakash Singh
{"title":"两亲性质子 F68 生物材料提高了治疗肺癌的染料木素的口服生物利用度和抗癌活性","authors":"Harihar Narayan, Ashok Kumar Jangid, Jiten R. Sharma, Rohit Verma, Umesh C. S. Yadav, Hitesh Kulhari, Prem Prakash Singh","doi":"10.1002/pat.6553","DOIUrl":null,"url":null,"abstract":"Many phyto‐based drugs available suffer from adverse effects due to their lack of water solubility and poor bioavailability after oral administration. Genistein (Gen) is a plant‐derived isoflavone that possesses potent bioactive activity, including antioxidant, anti‐inflammatory, proapoptotic, and antiproliferative properties against cancer cells. However, due to its poor aqueous solubility and restricted bioavailability, its potential therapeutic utility is limited. Among various strategies, nanomicelles have played a significant role in enhancing solubility and bioavailability, as well as delivering drugs directly to the site of action. Therefore, our study aims to synthesize SA‐modified PF68 (PF68‐SA) polymer‐based nanomicelles and evaluate their effectiveness in cancer treatment. In brief, the Gen‐loaded PF68‐SA nanomicelles (GNM) were successfully fabricated and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) analysis. In vitro cytotoxicity assays performed on human lung A549 cancer cells showed that GNM exhibited higher anticancer effects compared with bolus Gen. Additionally, the observed maximum concentration (<jats:italic>C</jats:italic><jats:sub>max</jats:sub>) for GEN suspension and GNM was 1.53 and 3.21 μg/mL, respectively, indicating that GNM was absorbed faster than the suspension formulation. GNM demonstrated enhanced area under the curve (AUC<jats:sub>0−<jats:italic>t</jats:italic></jats:sub>) (16.5 vs. 6.38), half‐life (<jats:italic>t</jats:italic><jats:sub>1/2</jats:sub>) (3.55 vs. 2.49), and mean residence time (5.52 vs. 4.34) compared with pure GEN suspension. Thus, the observed results clearly indicate an improvement in the anticancer activity and bioavailability of GEN after its administration as a nanomicelles formulation.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amphiphilic pluronic F68 biomaterial augmented oral bioavailability and anticancer activity of genistein in lung cancer treatment\",\"authors\":\"Harihar Narayan, Ashok Kumar Jangid, Jiten R. Sharma, Rohit Verma, Umesh C. S. Yadav, Hitesh Kulhari, Prem Prakash Singh\",\"doi\":\"10.1002/pat.6553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many phyto‐based drugs available suffer from adverse effects due to their lack of water solubility and poor bioavailability after oral administration. Genistein (Gen) is a plant‐derived isoflavone that possesses potent bioactive activity, including antioxidant, anti‐inflammatory, proapoptotic, and antiproliferative properties against cancer cells. However, due to its poor aqueous solubility and restricted bioavailability, its potential therapeutic utility is limited. Among various strategies, nanomicelles have played a significant role in enhancing solubility and bioavailability, as well as delivering drugs directly to the site of action. Therefore, our study aims to synthesize SA‐modified PF68 (PF68‐SA) polymer‐based nanomicelles and evaluate their effectiveness in cancer treatment. In brief, the Gen‐loaded PF68‐SA nanomicelles (GNM) were successfully fabricated and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) analysis. In vitro cytotoxicity assays performed on human lung A549 cancer cells showed that GNM exhibited higher anticancer effects compared with bolus Gen. Additionally, the observed maximum concentration (<jats:italic>C</jats:italic><jats:sub>max</jats:sub>) for GEN suspension and GNM was 1.53 and 3.21 μg/mL, respectively, indicating that GNM was absorbed faster than the suspension formulation. GNM demonstrated enhanced area under the curve (AUC<jats:sub>0−<jats:italic>t</jats:italic></jats:sub>) (16.5 vs. 6.38), half‐life (<jats:italic>t</jats:italic><jats:sub>1/2</jats:sub>) (3.55 vs. 2.49), and mean residence time (5.52 vs. 4.34) compared with pure GEN suspension. Thus, the observed results clearly indicate an improvement in the anticancer activity and bioavailability of GEN after its administration as a nanomicelles formulation.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6553\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6553","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Amphiphilic pluronic F68 biomaterial augmented oral bioavailability and anticancer activity of genistein in lung cancer treatment
Many phyto‐based drugs available suffer from adverse effects due to their lack of water solubility and poor bioavailability after oral administration. Genistein (Gen) is a plant‐derived isoflavone that possesses potent bioactive activity, including antioxidant, anti‐inflammatory, proapoptotic, and antiproliferative properties against cancer cells. However, due to its poor aqueous solubility and restricted bioavailability, its potential therapeutic utility is limited. Among various strategies, nanomicelles have played a significant role in enhancing solubility and bioavailability, as well as delivering drugs directly to the site of action. Therefore, our study aims to synthesize SA‐modified PF68 (PF68‐SA) polymer‐based nanomicelles and evaluate their effectiveness in cancer treatment. In brief, the Gen‐loaded PF68‐SA nanomicelles (GNM) were successfully fabricated and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) analysis. In vitro cytotoxicity assays performed on human lung A549 cancer cells showed that GNM exhibited higher anticancer effects compared with bolus Gen. Additionally, the observed maximum concentration (Cmax) for GEN suspension and GNM was 1.53 and 3.21 μg/mL, respectively, indicating that GNM was absorbed faster than the suspension formulation. GNM demonstrated enhanced area under the curve (AUC0−t) (16.5 vs. 6.38), half‐life (t1/2) (3.55 vs. 2.49), and mean residence time (5.52 vs. 4.34) compared with pure GEN suspension. Thus, the observed results clearly indicate an improvement in the anticancer activity and bioavailability of GEN after its administration as a nanomicelles formulation.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.