具有重要生态价值的红树林 Kandelia candel (L.) Druce 在盐度胁迫下的形态生理和分子反应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Malini Bhattacharyya, Suraj Prasannakumari Meera, Ashifa Nizam, Ajay Kumar
{"title":"具有重要生态价值的红树林 Kandelia candel (L.) Druce 在盐度胁迫下的形态生理和分子反应","authors":"Malini Bhattacharyya, Suraj Prasannakumari Meera, Ashifa Nizam, Ajay Kumar","doi":"10.1007/s13562-024-00904-1","DOIUrl":null,"url":null,"abstract":"<p>Mangroves are ecologically important model plants for understanding their tolerance mechanisms to stresses. This research investigates the growth, survival performance, photosynthetic functioning, physiological, and molecular responses of <i>Kandelia candel</i> (L.) Druce under varying salinity regimes (10, 20, 30, 40, and 50 PPT NaCl) at two time points (15 and 24 DAT). The salinity-induced growth variations indicate early responses in seedlings<i>,</i> which begin at 10–20 PPT. Most leaf and stem-specific morphological parameters showed a decreasing trend with increasing salinity, leading to leaf shedding beyond 20 PPT. On the other hand, the root system showed better response, and the root-specific parameters increased up to 10–20 PPT. The salinity tolerance level of <i>K. candel</i> hardly reaches the seawater salinity range (~ 35 PPT). Beyond this, salinity hampers growth, ultimately leading to plant mortality at 50 PPT. The concentration of the photosystem pigments was higher in freshwater-grown plants, emphasising the facultative halophytic nature of <i>K</i>. <i>candel</i>. The photosynthetic performance completely ceased, initiating the progressive death of the above-ground plant tissues at 20 PPT, leading to root hydraulic failure and plant death at higher salinities. This study further explores the expression of key genes crucial for proper photosynthesis and water uptake. The RT-qPCR results show that the genes encoding photosystem proteins (<i>PsaA</i>, <i>PsaB</i>, and <i>PsbA</i>) and membrane transporters (<i>AKT1</i>, <i>NHX</i>, <i>NIP,</i> and <i>TIP</i>) are downregulated. In contrast, other photosynthetic genes (<i>RbcS</i>, <i>RbcL</i>, <i>Ycf3,</i> and <i>LHCB</i>) are upregulated under salinity stress. These results provide an understanding of the physiological and molecular basis of mangrove ecological responses to salinity stress.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morpho-physiological and molecular responses of an ecologically important mangrove Kandelia candel (L.) Druce under salinity stress\",\"authors\":\"Malini Bhattacharyya, Suraj Prasannakumari Meera, Ashifa Nizam, Ajay Kumar\",\"doi\":\"10.1007/s13562-024-00904-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mangroves are ecologically important model plants for understanding their tolerance mechanisms to stresses. This research investigates the growth, survival performance, photosynthetic functioning, physiological, and molecular responses of <i>Kandelia candel</i> (L.) Druce under varying salinity regimes (10, 20, 30, 40, and 50 PPT NaCl) at two time points (15 and 24 DAT). The salinity-induced growth variations indicate early responses in seedlings<i>,</i> which begin at 10–20 PPT. Most leaf and stem-specific morphological parameters showed a decreasing trend with increasing salinity, leading to leaf shedding beyond 20 PPT. On the other hand, the root system showed better response, and the root-specific parameters increased up to 10–20 PPT. The salinity tolerance level of <i>K. candel</i> hardly reaches the seawater salinity range (~ 35 PPT). Beyond this, salinity hampers growth, ultimately leading to plant mortality at 50 PPT. The concentration of the photosystem pigments was higher in freshwater-grown plants, emphasising the facultative halophytic nature of <i>K</i>. <i>candel</i>. The photosynthetic performance completely ceased, initiating the progressive death of the above-ground plant tissues at 20 PPT, leading to root hydraulic failure and plant death at higher salinities. This study further explores the expression of key genes crucial for proper photosynthesis and water uptake. The RT-qPCR results show that the genes encoding photosystem proteins (<i>PsaA</i>, <i>PsaB</i>, and <i>PsbA</i>) and membrane transporters (<i>AKT1</i>, <i>NHX</i>, <i>NIP,</i> and <i>TIP</i>) are downregulated. In contrast, other photosynthetic genes (<i>RbcS</i>, <i>RbcL</i>, <i>Ycf3,</i> and <i>LHCB</i>) are upregulated under salinity stress. These results provide an understanding of the physiological and molecular basis of mangrove ecological responses to salinity stress.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00904-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00904-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

红树林是重要的生态模式植物,可用于了解其对压力的耐受机制。本研究调查了 Kandelia candel (L.) Druce 在不同盐度条件(10、20、30、40 和 50 PPT NaCl)下两个时间点(15 和 24 DAT)的生长、存活表现、光合功能、生理和分子反应。盐度引起的生长变化表明,幼苗在 10-20 PPT 时开始出现早期反应。大多数叶片和茎的特异性形态参数随着盐度的升高呈下降趋势,超过 20 PPT 时,叶片开始脱落。另一方面,根系的反应较好,根系特异性参数在 10-20 PPT 时有所增加。K. candel 的耐盐度很难达到海水盐度范围(约 35 PPT)。超过这个范围,盐度会阻碍生长,最终导致植物在 50 PPT 时死亡。淡水生长的植物光合系统色素浓度较高,这突出了 K. candel 的面生盐生特性。在 20 PPT 时,光合作用完全停止,植物地上组织逐渐死亡,导致根系水力衰竭,在更高盐度下植物死亡。本研究进一步探讨了对正常光合作用和水分吸收至关重要的关键基因的表达。RT-qPCR 结果显示,编码光合系统蛋白(PsaA、PsaB 和 PsbA)和膜转运体(AKT1、NHX、NIP 和 TIP)的基因表达下调。相反,其他光合基因(RbcS、RbcL、Ycf3 和 LHCB)在盐度胁迫下上调。这些结果有助于了解红树林对盐度胁迫的生态响应的生理和分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morpho-physiological and molecular responses of an ecologically important mangrove Kandelia candel (L.) Druce under salinity stress

Morpho-physiological and molecular responses of an ecologically important mangrove Kandelia candel (L.) Druce under salinity stress

Mangroves are ecologically important model plants for understanding their tolerance mechanisms to stresses. This research investigates the growth, survival performance, photosynthetic functioning, physiological, and molecular responses of Kandelia candel (L.) Druce under varying salinity regimes (10, 20, 30, 40, and 50 PPT NaCl) at two time points (15 and 24 DAT). The salinity-induced growth variations indicate early responses in seedlings, which begin at 10–20 PPT. Most leaf and stem-specific morphological parameters showed a decreasing trend with increasing salinity, leading to leaf shedding beyond 20 PPT. On the other hand, the root system showed better response, and the root-specific parameters increased up to 10–20 PPT. The salinity tolerance level of K. candel hardly reaches the seawater salinity range (~ 35 PPT). Beyond this, salinity hampers growth, ultimately leading to plant mortality at 50 PPT. The concentration of the photosystem pigments was higher in freshwater-grown plants, emphasising the facultative halophytic nature of K. candel. The photosynthetic performance completely ceased, initiating the progressive death of the above-ground plant tissues at 20 PPT, leading to root hydraulic failure and plant death at higher salinities. This study further explores the expression of key genes crucial for proper photosynthesis and water uptake. The RT-qPCR results show that the genes encoding photosystem proteins (PsaA, PsaB, and PsbA) and membrane transporters (AKT1, NHX, NIP, and TIP) are downregulated. In contrast, other photosynthetic genes (RbcS, RbcL, Ycf3, and LHCB) are upregulated under salinity stress. These results provide an understanding of the physiological and molecular basis of mangrove ecological responses to salinity stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信