内孤波下的边界层不稳定性及其对涡旋湍流的敏感性

IF 3.6 2区 工程技术 Q1 MECHANICS
Andres Posada-Bedoya, Jason Olsthoorn, Leon Boegman
{"title":"内孤波下的边界层不稳定性及其对涡旋湍流的敏感性","authors":"Andres Posada-Bedoya, Jason Olsthoorn, Leon Boegman","doi":"10.1017/jfm.2024.506","DOIUrl":null,"url":null,"abstract":"We investigated the stability of the bottom boundary layer (BBL) beneath periodic internal solitary waves (ISWs) of depression over a flat bottom through two-dimensional direct numerical simulations. We explored the convective versus absolute/global nature of the BBL instability in response to changes in Reynolds number, and the sensitivity of the instability to seeding noise in the front of the ISW – spanning laboratory to geophysical scales. The BBL was laminar at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline1.png\"/> <jats:tex-math>$Re_{ISW}=90$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and convectively unstable at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline2.png\"/> <jats:tex-math>$Re_{ISW}=300$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. At laboratory-scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline3.png\"/> <jats:tex-math>$Re_{ISW}=300$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the convective wave packet was periodically amplified by each successive ISW, until vortex shedding occurred. The associated noise-amplification behaviour potentially explains the discrepancies of the critical <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline4.png\"/> <jats:tex-math>$Re_{ISW}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> between the lock–release laboratory experiments and our Dubreil–Jacotin–Long-initialized numerical simulations as the result of the difference in background noise. Instability energy decreased under the front shoulder of the ISW, analogous to flow relaminarization under a favourable pressure gradient. At geophysical-scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline5.png\"/> <jats:tex-math>$Re_{ISW}=900$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the BBL was initially convectively unstable, and then the instability tracked with the ISW, appearing phenomenologically similar to a global instability. The simulated initial convective instability at both <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline6.png\"/> <jats:tex-math>$Re_{ISW}=300$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline7.png\"/> <jats:tex-math>$Re_{ISW}=900$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is in agreement with local linear stability analysis which predicts that the instability group speed is always lower than the ISW celerity. Increased free stream perturbations in front of the ISW and larger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline8.png\"/> <jats:tex-math>$Re_{ISW}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> shift the location of vortex shedding (and enhanced bed shear stress) beneath the wave, closer to the ISW trough, thereby potentially changing the location of maximum sediment resuspension, in agreement with field observations at higher <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005068_inline9.png\"/> <jats:tex-math>$Re_{ISW}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The boundary layer instability beneath internal solitary waves and its sensitivity to vortex wakes\",\"authors\":\"Andres Posada-Bedoya, Jason Olsthoorn, Leon Boegman\",\"doi\":\"10.1017/jfm.2024.506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the stability of the bottom boundary layer (BBL) beneath periodic internal solitary waves (ISWs) of depression over a flat bottom through two-dimensional direct numerical simulations. We explored the convective versus absolute/global nature of the BBL instability in response to changes in Reynolds number, and the sensitivity of the instability to seeding noise in the front of the ISW – spanning laboratory to geophysical scales. The BBL was laminar at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline1.png\\\"/> <jats:tex-math>$Re_{ISW}=90$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and convectively unstable at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline2.png\\\"/> <jats:tex-math>$Re_{ISW}=300$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. At laboratory-scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline3.png\\\"/> <jats:tex-math>$Re_{ISW}=300$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the convective wave packet was periodically amplified by each successive ISW, until vortex shedding occurred. The associated noise-amplification behaviour potentially explains the discrepancies of the critical <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline4.png\\\"/> <jats:tex-math>$Re_{ISW}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> between the lock–release laboratory experiments and our Dubreil–Jacotin–Long-initialized numerical simulations as the result of the difference in background noise. Instability energy decreased under the front shoulder of the ISW, analogous to flow relaminarization under a favourable pressure gradient. At geophysical-scale <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline5.png\\\"/> <jats:tex-math>$Re_{ISW}=900$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the BBL was initially convectively unstable, and then the instability tracked with the ISW, appearing phenomenologically similar to a global instability. The simulated initial convective instability at both <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline6.png\\\"/> <jats:tex-math>$Re_{ISW}=300$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline7.png\\\"/> <jats:tex-math>$Re_{ISW}=900$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is in agreement with local linear stability analysis which predicts that the instability group speed is always lower than the ISW celerity. Increased free stream perturbations in front of the ISW and larger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline8.png\\\"/> <jats:tex-math>$Re_{ISW}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> shift the location of vortex shedding (and enhanced bed shear stress) beneath the wave, closer to the ISW trough, thereby potentially changing the location of maximum sediment resuspension, in agreement with field observations at higher <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005068_inline9.png\\\"/> <jats:tex-math>$Re_{ISW}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.506\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.506","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过二维直接数值模拟,研究了平底上周期性凹陷内孤波(ISW)下底部边界层(BBL)的稳定性。我们探索了 BBL 不稳定性随雷诺数变化而产生的对流与绝对/全局性质,以及不稳定性对 ISW 前部播种噪声的敏感性 - 从实验室到地球物理尺度。当雷诺数为$Re_{ISW}=90时,BBL是层流的,而当雷诺数为$Re_{ISW}=300时,BBL是对流不稳定的。在实验室尺度 $Re_{ISW}=300$ 时,对流波包被每一个连续的 ISW 周期性放大,直到出现涡旋脱落。相关的噪声放大行为可能解释了锁定释放实验室实验与我们的 Dubreil-Jacotin-Long 初始化数值模拟之间临界值 $Re_{ISW}$ 的差异,这是背景噪声差异的结果。ISW前肩下的不稳定能量下降,类似于有利压力梯度下的流动再层流化。在地球物理尺度$Re_{ISW}=900$时,BBL最初是对流不稳定的,然后不稳定随着ISW的变化而变化,在现象上类似于全局不稳定。在$Re_{ISW}=300$和$Re_{ISW}=900$条件下模拟的初始对流不稳定性与局部线性稳定性分析一致,该分析预测不稳定群速度总是低于ISW速度。ISW 前方自由流扰动的增加和 $Re_{ISW}$ 的增大会使波浪下方的涡流脱落位置(和增强的床面剪应力)发生移动,从而更靠近 ISW 波谷,从而可能改变沉积物最大重悬浮位置,这与 $Re_{ISW}$ 较高时的现场观测结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The boundary layer instability beneath internal solitary waves and its sensitivity to vortex wakes
We investigated the stability of the bottom boundary layer (BBL) beneath periodic internal solitary waves (ISWs) of depression over a flat bottom through two-dimensional direct numerical simulations. We explored the convective versus absolute/global nature of the BBL instability in response to changes in Reynolds number, and the sensitivity of the instability to seeding noise in the front of the ISW – spanning laboratory to geophysical scales. The BBL was laminar at $Re_{ISW}=90$ and convectively unstable at $Re_{ISW}=300$ . At laboratory-scale $Re_{ISW}=300$ , the convective wave packet was periodically amplified by each successive ISW, until vortex shedding occurred. The associated noise-amplification behaviour potentially explains the discrepancies of the critical $Re_{ISW}$ between the lock–release laboratory experiments and our Dubreil–Jacotin–Long-initialized numerical simulations as the result of the difference in background noise. Instability energy decreased under the front shoulder of the ISW, analogous to flow relaminarization under a favourable pressure gradient. At geophysical-scale $Re_{ISW}=900$ , the BBL was initially convectively unstable, and then the instability tracked with the ISW, appearing phenomenologically similar to a global instability. The simulated initial convective instability at both $Re_{ISW}=300$ and $Re_{ISW}=900$ is in agreement with local linear stability analysis which predicts that the instability group speed is always lower than the ISW celerity. Increased free stream perturbations in front of the ISW and larger $Re_{ISW}$ shift the location of vortex shedding (and enhanced bed shear stress) beneath the wave, closer to the ISW trough, thereby potentially changing the location of maximum sediment resuspension, in agreement with field observations at higher $Re_{ISW}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信