Jacob Page, Joe Holey, Michael P. Brenner, Rich R. Kerswell
{"title":"用卷积自动编码器识别二维湍流中的精确相干结构","authors":"Jacob Page, Joe Holey, Michael P. Brenner, Rich R. Kerswell","doi":"10.1017/jfm.2024.552","DOIUrl":null,"url":null,"abstract":"Convolutional autoencoders are used to deconstruct the changing dynamics of two-dimensional Kolmogorov flow as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline1.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is increased from weakly chaotic flow at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline2.png\"/> <jats:tex-math>$Re=40$</jats:tex-math> </jats:alternatives> </jats:inline-formula> to a chaotic state dominated by a domain-filling vortex pair at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline3.png\"/> <jats:tex-math>$Re=400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. ‘Latent Fourier analysis’ (Page <jats:italic>et al.</jats:italic>, <jats:italic>Phys. Rev. Fluids</jats:italic>6, 2021, p. 034402) reveals a detached class of bursting dynamics at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline4.png\"/> <jats:tex-math>$Re=40$</jats:tex-math> </jats:alternatives> </jats:inline-formula> which merge with the low-dissipation dynamics as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline5.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is increased to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline6.png\"/> <jats:tex-math>$100$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and provides an efficient representation within which to find unstable periodic orbits (UPOs) using recurrent flow analysis. Focusing on initial guesses with energy in higher latent Fourier wavenumbers allows a significant number of high-dissipation-rate UPOs associated with the bursting events to be found for the first time. At <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline7.png\"/> <jats:tex-math>$Re=400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the UPOs discovered at lower <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline8.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> move away from the attractor, and an entirely different embedding structure is formed within the network devoid of small-scale vortices. Here latent Fourier projections identify an associated ‘large-scale’ UPO which we believe to be a finite-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005524_inline9.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> continuation of a solution to the Euler equations.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact coherent structures in two-dimensional turbulence identified with convolutional autoencoders\",\"authors\":\"Jacob Page, Joe Holey, Michael P. Brenner, Rich R. Kerswell\",\"doi\":\"10.1017/jfm.2024.552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional autoencoders are used to deconstruct the changing dynamics of two-dimensional Kolmogorov flow as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline1.png\\\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is increased from weakly chaotic flow at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline2.png\\\"/> <jats:tex-math>$Re=40$</jats:tex-math> </jats:alternatives> </jats:inline-formula> to a chaotic state dominated by a domain-filling vortex pair at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline3.png\\\"/> <jats:tex-math>$Re=400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. ‘Latent Fourier analysis’ (Page <jats:italic>et al.</jats:italic>, <jats:italic>Phys. Rev. Fluids</jats:italic>6, 2021, p. 034402) reveals a detached class of bursting dynamics at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline4.png\\\"/> <jats:tex-math>$Re=40$</jats:tex-math> </jats:alternatives> </jats:inline-formula> which merge with the low-dissipation dynamics as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline5.png\\\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is increased to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline6.png\\\"/> <jats:tex-math>$100$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and provides an efficient representation within which to find unstable periodic orbits (UPOs) using recurrent flow analysis. Focusing on initial guesses with energy in higher latent Fourier wavenumbers allows a significant number of high-dissipation-rate UPOs associated with the bursting events to be found for the first time. At <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline7.png\\\"/> <jats:tex-math>$Re=400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the UPOs discovered at lower <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline8.png\\\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> move away from the attractor, and an entirely different embedding structure is formed within the network devoid of small-scale vortices. Here latent Fourier projections identify an associated ‘large-scale’ UPO which we believe to be a finite-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005524_inline9.png\\\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> continuation of a solution to the Euler equations.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.552\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Exact coherent structures in two-dimensional turbulence identified with convolutional autoencoders
Convolutional autoencoders are used to deconstruct the changing dynamics of two-dimensional Kolmogorov flow as $Re$ is increased from weakly chaotic flow at $Re=40$ to a chaotic state dominated by a domain-filling vortex pair at $Re=400$. ‘Latent Fourier analysis’ (Page et al., Phys. Rev. Fluids6, 2021, p. 034402) reveals a detached class of bursting dynamics at $Re=40$ which merge with the low-dissipation dynamics as $Re$ is increased to $100$ and provides an efficient representation within which to find unstable periodic orbits (UPOs) using recurrent flow analysis. Focusing on initial guesses with energy in higher latent Fourier wavenumbers allows a significant number of high-dissipation-rate UPOs associated with the bursting events to be found for the first time. At $Re=400$, the UPOs discovered at lower $Re$ move away from the attractor, and an entirely different embedding structure is formed within the network devoid of small-scale vortices. Here latent Fourier projections identify an associated ‘large-scale’ UPO which we believe to be a finite-$Re$ continuation of a solution to the Euler equations.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.