{"title":"刚性凹凸床面盐化的无碰撞动力学理论","authors":"Diego Berzi, Alexandre Valance, James T. Jenkins","doi":"10.1017/jfm.2024.520","DOIUrl":null,"url":null,"abstract":"We employ the methods of statistical mechanics to obtain closures for the balance equations of momentum and fluctuation kinetic energy that govern the ballistic motion of grains rebounding at a rigid, bumpy bed that are driven by turbulent or non-turbulent shearing fluids, in the absence of mid-trajectory collisions and fluid velocity fluctuations. We obtain semi-analytical solutions for steady and fully developed saltation over horizontal beds for the vertical profiles of particle concentration and stresses and fluid and particle velocities. These compare favourably with measurements in discrete-element numerical simulations in the wide range of conditions of Earth and other planetary environments. The predictions of the particle horizontal mass flux and its scaling with the amount of particles in the system, the properties of the carrier fluid and the intensity of the shearing also agree with numerical simulations and wind-tunnel experiments.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"32 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collisionless kinetic theory for saltation over a rigid, bumpy bed\",\"authors\":\"Diego Berzi, Alexandre Valance, James T. Jenkins\",\"doi\":\"10.1017/jfm.2024.520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ the methods of statistical mechanics to obtain closures for the balance equations of momentum and fluctuation kinetic energy that govern the ballistic motion of grains rebounding at a rigid, bumpy bed that are driven by turbulent or non-turbulent shearing fluids, in the absence of mid-trajectory collisions and fluid velocity fluctuations. We obtain semi-analytical solutions for steady and fully developed saltation over horizontal beds for the vertical profiles of particle concentration and stresses and fluid and particle velocities. These compare favourably with measurements in discrete-element numerical simulations in the wide range of conditions of Earth and other planetary environments. The predictions of the particle horizontal mass flux and its scaling with the amount of particles in the system, the properties of the carrier fluid and the intensity of the shearing also agree with numerical simulations and wind-tunnel experiments.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.520\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.520","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Collisionless kinetic theory for saltation over a rigid, bumpy bed
We employ the methods of statistical mechanics to obtain closures for the balance equations of momentum and fluctuation kinetic energy that govern the ballistic motion of grains rebounding at a rigid, bumpy bed that are driven by turbulent or non-turbulent shearing fluids, in the absence of mid-trajectory collisions and fluid velocity fluctuations. We obtain semi-analytical solutions for steady and fully developed saltation over horizontal beds for the vertical profiles of particle concentration and stresses and fluid and particle velocities. These compare favourably with measurements in discrete-element numerical simulations in the wide range of conditions of Earth and other planetary environments. The predictions of the particle horizontal mass flux and its scaling with the amount of particles in the system, the properties of the carrier fluid and the intensity of the shearing also agree with numerical simulations and wind-tunnel experiments.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.