利用梯度场动力学理解普朗特尔数对中性和稳定分层流中动量和标量混合率的影响

IF 3.6 2区 工程技术 Q1 MECHANICS
Andrew D. Bragg, Stephen M. de Bruyn Kops
{"title":"利用梯度场动力学理解普朗特尔数对中性和稳定分层流中动量和标量混合率的影响","authors":"Andrew D. Bragg, Stephen M. de Bruyn Kops","doi":"10.1017/jfm.2024.548","DOIUrl":null,"url":null,"abstract":"Recently, direct numerical simulations (DNS) of stably stratified turbulence have shown that as the Prandtl number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005482_inline1.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) is increased from 1 to 7, the mean turbulent potential energy dissipation rate (TPE-DR) drops dramatically, while the mean turbulent kinetic energy dissipation rate (TKE-DR) increases significantly. Through an analysis of the equations governing the fluctuating velocity and density gradients we provide a mechanistic explanation for this surprising behaviour and test the predictions using DNS. We show that the mean density gradient gives rise to a mechanism that opposes the production of fluctuating density gradients, and this is connected to the emergence of ramp cliffs. The same term appears in the velocity gradient equation but with the opposite sign, and is the contribution from buoyancy. This term is ultimately the reason why the TPE-DR reduces while the TKE-DR increases with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005482_inline2.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our analysis also predicts that the effects of buoyancy on the smallest scales of the flow become stronger as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005482_inline3.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is increased, and this is confirmed by our DNS data. A consequence of this is that the standard buoyancy Reynolds number does not correctly estimate the impact of buoyancy at the smallest scales when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005482_inline4.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> deviates from 1, and we derive a suitable alternative parameter. Finally, an analysis of the filtered gradient equations reveals that the mean density gradient term changes sign at sufficiently large scales, such that buoyancy acts as a source for velocity gradients at small scales, but as a sink at large scales.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"46 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the effect of Prandtl number on momentum and scalar mixing rates in neutral and stably stratified flows using gradient field dynamics\",\"authors\":\"Andrew D. Bragg, Stephen M. de Bruyn Kops\",\"doi\":\"10.1017/jfm.2024.548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, direct numerical simulations (DNS) of stably stratified turbulence have shown that as the Prandtl number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005482_inline1.png\\\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) is increased from 1 to 7, the mean turbulent potential energy dissipation rate (TPE-DR) drops dramatically, while the mean turbulent kinetic energy dissipation rate (TKE-DR) increases significantly. Through an analysis of the equations governing the fluctuating velocity and density gradients we provide a mechanistic explanation for this surprising behaviour and test the predictions using DNS. We show that the mean density gradient gives rise to a mechanism that opposes the production of fluctuating density gradients, and this is connected to the emergence of ramp cliffs. The same term appears in the velocity gradient equation but with the opposite sign, and is the contribution from buoyancy. This term is ultimately the reason why the TPE-DR reduces while the TKE-DR increases with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005482_inline2.png\\\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our analysis also predicts that the effects of buoyancy on the smallest scales of the flow become stronger as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005482_inline3.png\\\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is increased, and this is confirmed by our DNS data. A consequence of this is that the standard buoyancy Reynolds number does not correctly estimate the impact of buoyancy at the smallest scales when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005482_inline4.png\\\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> deviates from 1, and we derive a suitable alternative parameter. Finally, an analysis of the filtered gradient equations reveals that the mean density gradient term changes sign at sufficiently large scales, such that buoyancy acts as a source for velocity gradients at small scales, but as a sink at large scales.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.548\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.548","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,对稳定分层湍流的直接数值模拟(DNS)表明,当普朗特数($Pr$)从 1 增加到 7 时,平均湍流势能耗散率(TPE-DR)急剧下降,而平均湍流动能耗散率(TKE-DR)则显著增加。通过对波动速度梯度和密度梯度方程的分析,我们为这种令人惊讶的行为提供了机理解释,并利用 DNS 对预测结果进行了检验。我们发现,平均密度梯度产生了一种与波动密度梯度相反的机制,这与斜坡悬崖的出现有关。同样的项出现在速度梯度方程中,但符号相反,是浮力的贡献。这个项最终导致 TPE-DR 随着 $Pr$ 的增大而减小,而 TKE-DR 随着 $Pr$ 的增大而增大。我们的分析还预测,随着 Pr$ 的增加,浮力对最小尺度气流的影响会变得更强,我们的 DNS 数据也证实了这一点。其结果是,当 $Pr$ 偏离 1 时,标准浮力雷诺数不能正确估计浮力对最小尺度的影响,因此我们得出了一个合适的替代参数。最后,对滤波梯度方程的分析表明,平均密度梯度项在足够大的尺度上会改变符号,因此浮力在小尺度上是速度梯度的源,而在大尺度上则是速度梯度的汇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the effect of Prandtl number on momentum and scalar mixing rates in neutral and stably stratified flows using gradient field dynamics
Recently, direct numerical simulations (DNS) of stably stratified turbulence have shown that as the Prandtl number ( $Pr$ ) is increased from 1 to 7, the mean turbulent potential energy dissipation rate (TPE-DR) drops dramatically, while the mean turbulent kinetic energy dissipation rate (TKE-DR) increases significantly. Through an analysis of the equations governing the fluctuating velocity and density gradients we provide a mechanistic explanation for this surprising behaviour and test the predictions using DNS. We show that the mean density gradient gives rise to a mechanism that opposes the production of fluctuating density gradients, and this is connected to the emergence of ramp cliffs. The same term appears in the velocity gradient equation but with the opposite sign, and is the contribution from buoyancy. This term is ultimately the reason why the TPE-DR reduces while the TKE-DR increases with increasing $Pr$ . Our analysis also predicts that the effects of buoyancy on the smallest scales of the flow become stronger as $Pr$ is increased, and this is confirmed by our DNS data. A consequence of this is that the standard buoyancy Reynolds number does not correctly estimate the impact of buoyancy at the smallest scales when $Pr$ deviates from 1, and we derive a suitable alternative parameter. Finally, an analysis of the filtered gradient equations reveals that the mean density gradient term changes sign at sufficiently large scales, such that buoyancy acts as a source for velocity gradients at small scales, but as a sink at large scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信