{"title":"作为相关聚合过程的混合","authors":"J. Heyman, E. Villermaux, P. Davy, T. Le Borgne","doi":"10.1017/jfm.2024.537","DOIUrl":null,"url":null,"abstract":"Mixing describes the process by which solutes evolve from an initial heterogeneous state to uniformity under the stirring action of a fluid flow. Fluid stretching forms thin scalar lamellae that coalesce due to molecular diffusion. Owing to the linearity of the advection–diffusion equation, coalescence can be envisioned as an aggregation process. Here, we demonstrate that in smooth two-dimensional chaotic flows, mixing obeys a correlated aggregation process, where the spatial distribution of the number of lamellae in aggregates is highly correlated with their elongation, and is set by the fractal properties of the advected material lines. We show that the presence of correlations makes mixing less efficient than a completely random aggregation process because lamellae with similar elongations and scalar levels tend to remain isolated from each other. We show that correlated aggregation is uniquely determined by a single exponent that quantifies the effective number of random aggregation events. These findings expand aggregation theories to a larger class of systems, which have relevance to various fundamental and applied mixing problems.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing as a correlated aggregation process\",\"authors\":\"J. Heyman, E. Villermaux, P. Davy, T. Le Borgne\",\"doi\":\"10.1017/jfm.2024.537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixing describes the process by which solutes evolve from an initial heterogeneous state to uniformity under the stirring action of a fluid flow. Fluid stretching forms thin scalar lamellae that coalesce due to molecular diffusion. Owing to the linearity of the advection–diffusion equation, coalescence can be envisioned as an aggregation process. Here, we demonstrate that in smooth two-dimensional chaotic flows, mixing obeys a correlated aggregation process, where the spatial distribution of the number of lamellae in aggregates is highly correlated with their elongation, and is set by the fractal properties of the advected material lines. We show that the presence of correlations makes mixing less efficient than a completely random aggregation process because lamellae with similar elongations and scalar levels tend to remain isolated from each other. We show that correlated aggregation is uniquely determined by a single exponent that quantifies the effective number of random aggregation events. These findings expand aggregation theories to a larger class of systems, which have relevance to various fundamental and applied mixing problems.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.537\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.537","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Mixing describes the process by which solutes evolve from an initial heterogeneous state to uniformity under the stirring action of a fluid flow. Fluid stretching forms thin scalar lamellae that coalesce due to molecular diffusion. Owing to the linearity of the advection–diffusion equation, coalescence can be envisioned as an aggregation process. Here, we demonstrate that in smooth two-dimensional chaotic flows, mixing obeys a correlated aggregation process, where the spatial distribution of the number of lamellae in aggregates is highly correlated with their elongation, and is set by the fractal properties of the advected material lines. We show that the presence of correlations makes mixing less efficient than a completely random aggregation process because lamellae with similar elongations and scalar levels tend to remain isolated from each other. We show that correlated aggregation is uniquely determined by a single exponent that quantifies the effective number of random aggregation events. These findings expand aggregation theories to a larger class of systems, which have relevance to various fundamental and applied mixing problems.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.