可压缩磁流体动力学湍流中的非普遍性和耗散异常

IF 3.6 2区 工程技术 Q1 MECHANICS
Cheng Li, Yan Yang, William H. Matthaeus, Bin Jiang, Minping Wan, Shiyi Chen
{"title":"可压缩磁流体动力学湍流中的非普遍性和耗散异常","authors":"Cheng Li, Yan Yang, William H. Matthaeus, Bin Jiang, Minping Wan, Shiyi Chen","doi":"10.1017/jfm.2024.545","DOIUrl":null,"url":null,"abstract":"We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline1.png\"/> <jats:tex-math>$\\mathcal {C}_{\\varepsilon }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> fits well with the model <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline2.png\"/> <jats:tex-math>$\\mathcal {C}_{\\varepsilon } = \\mathcal {C}_{\\varepsilon,\\infty } + \\mathcal {D}/R_L^-$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all levels of flow compressibility considered here, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline3.png\"/> <jats:tex-math>$R_L^-$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the generalized large-scale Reynolds number. The asymptotic value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline4.png\"/> <jats:tex-math>$\\mathcal {C}_{\\varepsilon,\\infty }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"57 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-universality and dissipative anomaly in compressible magnetohydrodynamic turbulence\",\"authors\":\"Cheng Li, Yan Yang, William H. Matthaeus, Bin Jiang, Minping Wan, Shiyi Chen\",\"doi\":\"10.1017/jfm.2024.545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005457_inline1.png\\\"/> <jats:tex-math>$\\\\mathcal {C}_{\\\\varepsilon }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> fits well with the model <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005457_inline2.png\\\"/> <jats:tex-math>$\\\\mathcal {C}_{\\\\varepsilon } = \\\\mathcal {C}_{\\\\varepsilon,\\\\infty } + \\\\mathcal {D}/R_L^-$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all levels of flow compressibility considered here, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005457_inline3.png\\\"/> <jats:tex-math>$R_L^-$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the generalized large-scale Reynolds number. The asymptotic value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005457_inline4.png\\\"/> <jats:tex-math>$\\\\mathcal {C}_{\\\\varepsilon,\\\\infty }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.545\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.545","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用直接数值模拟系统地研究了可压缩磁流体动力学(MHD)湍流中的耗散异常,结果表明总耗散随粘度减小而保持有限。无量纲耗散率 $\mathcal {C}_{\varepsilon }$ 与模型 $\mathcal {C}_{\varepsilon } 非常吻合。= \mathcal {C}_{\varepsilon,\infty }+ \mathcal {D}/R_L^-$ 适用于本文考虑的所有流动压缩性水平,其中 $R_L^-$ 是广义大尺度雷诺数。渐近值 $\mathcal {C}_{\varepsilon,\infty }$ 描述了总的能量传递通量,并随着流动压缩性的增加而减小,表明可压缩 MHD 湍流中无量纲耗散率的非普遍性。在引入根据经验修正的耗散率之后,可压缩情况下的数据坍缩为与不可压缩 MHD 情况类似的形式,仅取决于修正的雷诺数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-universality and dissipative anomaly in compressible magnetohydrodynamic turbulence
We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate $\mathcal {C}_{\varepsilon }$ fits well with the model $\mathcal {C}_{\varepsilon } = \mathcal {C}_{\varepsilon,\infty } + \mathcal {D}/R_L^-$ for all levels of flow compressibility considered here, where $R_L^-$ is the generalized large-scale Reynolds number. The asymptotic value $\mathcal {C}_{\varepsilon,\infty }$ describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信