具有高室温离子导电性的硅烷连接聚乙烯氧化物基复合聚合物电解质中的离子导电与非离子导电陶瓷填料

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-08-28 DOI:10.1039/d4ya00231h
Eun Ju Jeon, Sharif Haidar, Laura Helmers, Arno Kwade, Georg Garnweitner
{"title":"具有高室温离子导电性的硅烷连接聚乙烯氧化物基复合聚合物电解质中的离子导电与非离子导电陶瓷填料","authors":"Eun Ju Jeon, Sharif Haidar, Laura Helmers, Arno Kwade, Georg Garnweitner","doi":"10.1039/d4ya00231h","DOIUrl":null,"url":null,"abstract":"Polyethylene oxide (PEO)-based polymer electrolytes, despite their cost-effectiveness and ease of processing, suffer from low ionic conductivity at lower temperatures due to the semi-crystalline nature of PEO. Incorporating ceramic filler particles into the polymer matrix offers a potential solution by disrupting its rigid crystalline structure, thereby improving the flexibility of the polymer chains. However, the Li ion conduction pathway within these composite polymer electrolytes (CPEs) remains predominantly within the polymer matrix if the filler particles are only physically mixed. The surface modification of filler particles can improve the interfacial compatibility and ionic conductivity. In this work, two types of filler particles, passive ZrO<small><sub>2</sub></small> and active Li<small><sub>7</sub></small>La<small><sub>3</sub></small>Zr<small><sub>2</sub></small>O<small><sub>12</sub></small> (LLZO), are compared and incorporated into PEO–polyethylene glycol (PEG)–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) CPEs. The surface of the filler particles is functionalized with a silane ligand ((3-glycidyloxypropyl)trimethoxysilane (GPTMS)) prior to their integration into the PEO matrix. This modifies the interfacial properties between the polymer and the filler particles, hence influencing the ionic conductivity. The functionalized ZrO<small><sub>2</sub></small> fillers enhance the ionic conductivity of the CPEs by reducing the crystallinity of PEO. The PEO–PEG–LiTFSI CPE with 15 vol% of GPTMS–ZrO<small><sub>2</sub></small> achieved an ionic conductivity of 6.66 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 20 °C, which is significantly higher than that of the standard PEO–LiTFSI (9.26 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small>). Additionally, coupling GPTMS to PEO chains without the introduction of filler particles also improved the ionic conductivity, while the incorporation of functionalized LLZO fillers does not, which is attributed to a LiCO<small><sub>3</sub></small> passivation layer. The results suggest a viable strategy to overcome the inherent limitations of PEO electrolyte, thus offering valuable insights into the design and optimization of CPEs for practical applications.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion-conductive vs. non-ion-conductive ceramic fillers in silane-linked polyethylene oxide-based composite polymer electrolytes with high room-temperature ionic conductivity\",\"authors\":\"Eun Ju Jeon, Sharif Haidar, Laura Helmers, Arno Kwade, Georg Garnweitner\",\"doi\":\"10.1039/d4ya00231h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethylene oxide (PEO)-based polymer electrolytes, despite their cost-effectiveness and ease of processing, suffer from low ionic conductivity at lower temperatures due to the semi-crystalline nature of PEO. Incorporating ceramic filler particles into the polymer matrix offers a potential solution by disrupting its rigid crystalline structure, thereby improving the flexibility of the polymer chains. However, the Li ion conduction pathway within these composite polymer electrolytes (CPEs) remains predominantly within the polymer matrix if the filler particles are only physically mixed. The surface modification of filler particles can improve the interfacial compatibility and ionic conductivity. In this work, two types of filler particles, passive ZrO<small><sub>2</sub></small> and active Li<small><sub>7</sub></small>La<small><sub>3</sub></small>Zr<small><sub>2</sub></small>O<small><sub>12</sub></small> (LLZO), are compared and incorporated into PEO–polyethylene glycol (PEG)–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) CPEs. The surface of the filler particles is functionalized with a silane ligand ((3-glycidyloxypropyl)trimethoxysilane (GPTMS)) prior to their integration into the PEO matrix. This modifies the interfacial properties between the polymer and the filler particles, hence influencing the ionic conductivity. The functionalized ZrO<small><sub>2</sub></small> fillers enhance the ionic conductivity of the CPEs by reducing the crystallinity of PEO. The PEO–PEG–LiTFSI CPE with 15 vol% of GPTMS–ZrO<small><sub>2</sub></small> achieved an ionic conductivity of 6.66 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 20 °C, which is significantly higher than that of the standard PEO–LiTFSI (9.26 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small>). Additionally, coupling GPTMS to PEO chains without the introduction of filler particles also improved the ionic conductivity, while the incorporation of functionalized LLZO fillers does not, which is attributed to a LiCO<small><sub>3</sub></small> passivation layer. The results suggest a viable strategy to overcome the inherent limitations of PEO electrolyte, thus offering valuable insights into the design and optimization of CPEs for practical applications.\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ya00231h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4ya00231h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于聚环氧乙烷(PEO)的聚合物电解质尽管具有成本效益且易于加工,但由于其半结晶性质,在较低温度下离子导电率较低。在聚合物基体中加入陶瓷填料颗粒可以破坏聚合物的刚性结晶结构,从而提高聚合物链的柔韧性,因此是一种潜在的解决方案。然而,如果只是物理混合填料颗粒,锂离子在这些复合聚合物电解质(CPE)中的传导途径仍主要在聚合物基体中。对填料颗粒进行表面改性可以改善界面相容性和离子传导性。在这项研究中,比较了被动型 ZrO2 和主动型 Li7La3Zr2O12(LLZO)这两种填料颗粒,并将其加入 PEO 聚乙二醇(PEG)-双(三氟甲磺酰)亚胺锂(LiTFSI)氯化聚乙烯中。在填料颗粒与 PEO 基体结合之前,先用硅烷配体((3-缩水甘油氧丙基)三甲氧基硅烷 (GPTMS))对其表面进行功能化处理。这改变了聚合物与填料颗粒之间的界面特性,从而影响了离子传导性。官能化 ZrO2 填料通过降低 PEO 的结晶度来增强 CPE 的离子导电性。含有 15 Vol% GPTMS-ZrO2 的 PEO-PEG-LiTFSI CPE 在 20 °C 时的离子电导率为 6.66 × 10-4 S cm-1,明显高于标准 PEO-LiTFSI 的离子电导率(9.26 × 10-6 S cm-1)。此外,在不引入填料颗粒的情况下将 GPTMS 与 PEO 链耦合也能提高离子电导率,而加入官能化 LLZO 填料则不会提高离子电导率,这要归功于 LiCO3 钝化层。这些结果为克服 PEO 电解质的固有局限性提供了一种可行的策略,从而为设计和优化 CPE 的实际应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ion-conductive vs. non-ion-conductive ceramic fillers in silane-linked polyethylene oxide-based composite polymer electrolytes with high room-temperature ionic conductivity

Ion-conductive vs. non-ion-conductive ceramic fillers in silane-linked polyethylene oxide-based composite polymer electrolytes with high room-temperature ionic conductivity
Polyethylene oxide (PEO)-based polymer electrolytes, despite their cost-effectiveness and ease of processing, suffer from low ionic conductivity at lower temperatures due to the semi-crystalline nature of PEO. Incorporating ceramic filler particles into the polymer matrix offers a potential solution by disrupting its rigid crystalline structure, thereby improving the flexibility of the polymer chains. However, the Li ion conduction pathway within these composite polymer electrolytes (CPEs) remains predominantly within the polymer matrix if the filler particles are only physically mixed. The surface modification of filler particles can improve the interfacial compatibility and ionic conductivity. In this work, two types of filler particles, passive ZrO2 and active Li7La3Zr2O12 (LLZO), are compared and incorporated into PEO–polyethylene glycol (PEG)–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) CPEs. The surface of the filler particles is functionalized with a silane ligand ((3-glycidyloxypropyl)trimethoxysilane (GPTMS)) prior to their integration into the PEO matrix. This modifies the interfacial properties between the polymer and the filler particles, hence influencing the ionic conductivity. The functionalized ZrO2 fillers enhance the ionic conductivity of the CPEs by reducing the crystallinity of PEO. The PEO–PEG–LiTFSI CPE with 15 vol% of GPTMS–ZrO2 achieved an ionic conductivity of 6.66 × 10−4 S cm−1 at 20 °C, which is significantly higher than that of the standard PEO–LiTFSI (9.26 × 10−6 S cm−1). Additionally, coupling GPTMS to PEO chains without the introduction of filler particles also improved the ionic conductivity, while the incorporation of functionalized LLZO fillers does not, which is attributed to a LiCO3 passivation layer. The results suggest a viable strategy to overcome the inherent limitations of PEO electrolyte, thus offering valuable insights into the design and optimization of CPEs for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信