{"title":"推进核能预测:探索回归建模技术以提高准确性","authors":"Anjali Nighoskar, Preeti Chaurasia, Nagendra Singh","doi":"10.1016/j.net.2024.08.013","DOIUrl":null,"url":null,"abstract":"The urgent requirement for sustainable and dependable energy sources has stimulated an increased fascination with precisely forecasting nuclear energy generation. This work utilizes sophisticated regression modeling approaches, namely XGBoost, to predict nuclear energy generation by leveraging economic indices such as Gross Domestic Product (GDP). Each model's prediction accuracy has been evaluated by examining historical data on nuclear energy output and GDP from various locations. Here, measures such as mean squared error (MSE) and coefficient of determination (R2) to analyze their effectiveness have been used. The results of this study demonstrate that the XGBoost model outperforms standard regression approaches, showing greater R2 values and lower MSE scores. Furthermore, the consequences of these discoveries for the development of energy policy offer possible directions for future study in energy forecasting. This study provides useful insights for energy planners and policymakers, enabling a more profound comprehension of the complex relationship between economic indicators and nuclear energy generation.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing nuclear energy forecasting: Exploring regression modeling techniques for improved accuracy\",\"authors\":\"Anjali Nighoskar, Preeti Chaurasia, Nagendra Singh\",\"doi\":\"10.1016/j.net.2024.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The urgent requirement for sustainable and dependable energy sources has stimulated an increased fascination with precisely forecasting nuclear energy generation. This work utilizes sophisticated regression modeling approaches, namely XGBoost, to predict nuclear energy generation by leveraging economic indices such as Gross Domestic Product (GDP). Each model's prediction accuracy has been evaluated by examining historical data on nuclear energy output and GDP from various locations. Here, measures such as mean squared error (MSE) and coefficient of determination (R2) to analyze their effectiveness have been used. The results of this study demonstrate that the XGBoost model outperforms standard regression approaches, showing greater R2 values and lower MSE scores. Furthermore, the consequences of these discoveries for the development of energy policy offer possible directions for future study in energy forecasting. This study provides useful insights for energy planners and policymakers, enabling a more profound comprehension of the complex relationship between economic indicators and nuclear energy generation.\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.net.2024.08.013\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.net.2024.08.013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Advancing nuclear energy forecasting: Exploring regression modeling techniques for improved accuracy
The urgent requirement for sustainable and dependable energy sources has stimulated an increased fascination with precisely forecasting nuclear energy generation. This work utilizes sophisticated regression modeling approaches, namely XGBoost, to predict nuclear energy generation by leveraging economic indices such as Gross Domestic Product (GDP). Each model's prediction accuracy has been evaluated by examining historical data on nuclear energy output and GDP from various locations. Here, measures such as mean squared error (MSE) and coefficient of determination (R2) to analyze their effectiveness have been used. The results of this study demonstrate that the XGBoost model outperforms standard regression approaches, showing greater R2 values and lower MSE scores. Furthermore, the consequences of these discoveries for the development of energy policy offer possible directions for future study in energy forecasting. This study provides useful insights for energy planners and policymakers, enabling a more profound comprehension of the complex relationship between economic indicators and nuclear energy generation.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development